
UNIVERSIDAD DE EXTREMADURA
Escuela Politécnica

Ingeniería Técnica de Telecomunicaciones (Especialidad Imagen y Sonido)

Proyecto Fin de Carrera

Extracción de Características de Imagen para
Navegación de Robots Móviles

Antonio Redondo López
Febrero 2011





UNIVERSIDAD DE EXTREMADURA
Escuela Politécnica

Ingeniería Técnica de Telecomunicaciones (Especialidad Imagen y Sonido)

Proyecto Fin de Carrera

Extracción de Características de Imagen para
Navegación de Robots Móviles

Autor: Antonio Redondo López
Fdo.:

Tutor.: Pedro M. Núñez Trujillo
Fdo.:

Tribunal calificador
Presidente: José Vicente Crespo

Fdo.:
Secretario: Valentín de la Rubia Hernández

Fdo.:
Vocal: Pablo Bustos García de Castro

Fdo.:

Calificación:
Fecha:





Nota: la Memoria está íntegramente en inglés, aunque el prólogo también está en 
español. En la sección Sobre la Memoria del Prólogo está explicado porqué.

Note: the Memory is entirely in English, although the prologue is also in Spanish. In 
About the Memory section of the Preface it is explained why.



Visit the project website on Google Code:
http://code.google.com/p/image-feature-detector

http://code.google.com/p/image-feature-detector


Contents

Prólogo .....................................................................................................................  v
Sobre la Memoria  vi

Preface ..................................................................................................................... ix
About the Memory  x

1.  Introduction ......................................................................................................... 1
What Is Computer Vision  1
What Is Digital Image Processing  5
Robotics and Robolab  6
Visual Odometry  8

2. Image Features, Descriptors and Detectors ........................................................... 11
What Is a Feature  11
What Is a Descriptor  12
Main Detectors Overview  14

3. Comparing Image Descriptors: Proofs and Results ................................................ 43
Harris vs. FAST  44
SIFT vs. SURF  49

4. Image Feature Detector: the Computer Program .................................................. 55
Overview  55
Qt Application Framework  55
OpenCV Library  57
Image Feature Detector  58

5. Conclusions .........................................................................................................  67

Bibliography ........................................................................................................... 69
References  69
Image Credits  73

Contents v





Prólogo

Éste es mi proyecto final de carrera que se convertirá en la guinda del pastel de una 
Ingeniería Técnica de Telecomunicaciones llena de excitantes e inesperadas aventuras. 
Su finalidad es dar un vistazo general al mundo de la visión por computador como 
una introducción a la memoria y a partir de este punto, elaborar un resumen de los 
principales  detectores  contemporáneos  de  características  de  imagen,  principal 
finalidad del proyecto y disciplina de visión por computador que es fundamental en 
campos como biometría, industria, telecomunicaciones o videojuegos. A su vez, estos 
detectores  de  características  de  imágenes  son  implementados  en  un  programa  de 
ordenador para Linux con interfaz gráfica de usuario llamado Image Feature Detector, 
segundo objetivo del proyecto y ampliamente explicado en el Capítulo 4.

Cada capítulo de la memoria presenta un paquete de información en lo referente a 
extracción de características en procesamiento de imágenes y visión por computador. 
En  el  Capítulo  1 veremos  el  principal  conocimiento  en  el  cual  este  proyecto  es 
desarrollado:  la  visión por computador y el  procesamiento de imágenes.  Será una 
visión  global  de  los  puntos  claves  de  estos  campos  y  una  recopilación  de  los 
principales usos aplicados a la vida real, y posteriormente nos concentraremos en dos 
subtemas  relacionados  con  el  proyecto:  odometría  visual  y  emparejamiento  por 
plantilla.

En  el  Capítulo  2 profundizaremos  en  el  tema  principal  del  proyecto,  las 
características  de  imagen.  Este  capítulo  está  desarrollado  desde  sus  origines  y 
posteriormente referenciado a material más actual. Será un desarrollo teórico anterior a 
la complementación en el Capítulo 4.

En la mitad de la memoria,  Capítulo 3, compararemos los principales detectores 
vistos en el  Capítulo 2. Puesto que no todos los detectores funcionan de la misma 
manera, la comparativa está dividida basándonos en el tipo de detector, entre si son 
escalarmente  variables  (Harris  y  FAST)  o  escalarmente  invariables  (SIFT  y  SURF). 
Veremos cómo de potente y rápidos son los detectores y si están preparados para ser 
implementados en un sistema de video en tiempo real.

Posteriormente, en el  Capítulo 4 explicaremos la implementación práctica de los 
detectores de características en un programa de ordenador para Linux. En este capítulo 

Prólogo vii



hay implementaciones totalmente funcionales de la mayoría de las técnicas descritas 
en el Capítulo 2, y aplicadas para procesar imágenes.

Aunque el objetivo de este proyecto ha estado más enfocado en analizar imágenes 
en  tiempo  real  para  la  aplicación  posterior  de  odometría  visual,  las  técnicas  son 
generales y pueden migrar  a otros ámbitos  de aplicación.  Además,  hay una cierta 
cantidad de matemáticas en la memoria. Y es que la visión por computador puede 
considerarse como una rama de las matemáticas aplicadas, aunque esto no siempre se 
aplica a todas las áreas dentro del campo.

Yo mismo también me he beneficiado mucho escribiendo esta memoria. Gracias a 
ella  he sido  capaz de iniciarme en una manera  bastante  decente  en  la  abarcante 
disciplina  de  la  visión  por  computador,  y  especialmente  en  sus  subdisciplinas  de 
detención de características y emparejamiento por plantilla.

Gracias a esta memoria también he conocido el mundo de la literatura científica, 
algo que, aunque las fuentes de conocimiento (libros, apuntes de universidad, noticias 
de prensa y artículos de Internet que cada día están con nosotros) están basados en 
gran  medida  en  estos  trabajos,  en  mi  humilde  existencia  solo  los  vi  como  esas 
pequeñas referencias que están al final de libros y artículos de Wikipedia.

Sobre la Memoria
He intentado elaborar la memoria en el modo más claro y lógico posible. Para 

hacerlo he puesto especial atención en la apariencia y orden de textos y figuras. Esto 
es esencial para obtener claridad e incrementar la velocidad de lectura y comprensión, 
aspecto importante en largos trabajos académicos y científicos como éste. Además, 
con una buena selección de fuentes, colores y orden la memoria es visualmente más 
atractiva.  Al  final  del  prologo está  explicado cuales  programas y  fuentes  han sido 
usadas en la memoria.

Absolutamente  todas  las  fuentes  y  referencias  usadas  en  la  creación  de  esta 
memoria,  ya sean libros,  literatura científica,  documentación on-line o artículos de 
Wikipedia, están enumerados en la Bibliografía. Para añadir claridad a la importancia 
de  cada  fuente,  hay  dos  tipos  de  referencias,  explicadas  en  el  siguiente  párrafo. 
Durante  los  capítulos,  fragmentos  resumidos  de  estas  fuentes  son  usadas,  y 
normalmente los capítulos y párrafos de un determinado tema empezarán con una 
referencia a la fuente original. También, todas las imágenes que aparecen a lo largo de 
la memoria tienen la fuente original enumerada en la Bibliografía.

A lo largo de la memoria hay referencias ([x])  a la  Bibliografía. Estas referencias 
están  clasificadas  en  2  categorías:  en  azul  ([x])  están  las  referencias  principales, 
referencias  que son básicas  para  la  elaboración y comprensión del  proyecto  y las 
cuales he cogido información para escribir la memoria o comprender algún elemento 
relacionado. Estas referencias en la mayoría de los casos no solo aparecen sino que 

viii Prólogo



además son explicadas en el párrafo o capítulo con texto e imágenes. Por otra parte, 
en verde ([x]) están las referencias secundarias. Estas referencias no son decisivas para 
la elaboración y comprensión del proyecto y muchas veces son referencias que solo 
son mencionadas sin mayor explicación, a diferencia de las referencias azules. Pero 
deben aparecer durante las explicaciones para poder crear una red de conceptos e 
ideas. Además, si el lector quiere, permite investigación adicional.

¿Por qué he decidido hacer el proyecto (memoria y programa de ordenador) en 
inglés? He tomado esta decisión, primero de todo, porque tengo un nivel de inglés 
escrito suficiente para escribir más o menos decentemente la memoria. No voy a hacer 
ninguna presentación en inglés, así que escribir la memoria en inglés es una tarea 
asumible puesto que no requiere hablar inglés, la parte dura de aprender idiomas. 
Segundo, el inglés es el idioma del conocimiento; casi toda la literatura científica y 
muchos libros técnicos, son, en su origen, en inglés. Y tercero y como consecuencia 
de las razones anteriores, si me comunico en inglés mi trabajo podrá llegar a más 
audiencia científica en vez de si lo hubiera escrito en español. Y como casi ingeniero, 
debo saber inglés, y he hecho uso de él. Por supuesto, he usado herramientas que me 
han ayudado a escribir un inglés mejor; empezando por el corrector gramatical de 
OpenOffice.org Writer, y posteriormente, todo tipo de herramientas para averiguar si 
lo  que  escribía  era  correcto:  Google  Translate,  SYSTRANet,  WordReference.com y 
English Wiktionary. La memoria está escrita en inglés americano.

Para escribir la memoria he usado  OpenOffice.org Writer 3.2; me permite cubrir 
todas las necesidades que pueden aparecer en un trabajo académico como éste, y 
además, es multiplataforma y software libre y de código abierto. La edición de imagen 
no ha sido una tarea importante en el proyecto, pero para algunas imágenes y algún 
icono de Image Feature Detector he usado Corel Photo Paint X5 para editar y crearlos. 
La fuente usada para el cuerpo del texto es URWClassico, para los títulos Myriad Pro y 
para las fórmulas Minion Pro.

Prólogo ix

http://www.corel.com/
http://www.openoffice.org/
http://en.wiktionary.org/
http://wordreference.com/
http://www.systranet.com/
http://translate.google.com/




Preface

This  is  my end of  degree project  that  will  become the  icing on the  cake of  a 
Telecommunications Degree full of exciting and unexpected adventures. Its scope is to 
give a general view of the computer vision world as an introduction to the memory 
and thereupon, to elaborate a summarize of the main contemporaneous image feature 
detectors,  main  scope  of  the  project  and  computer  vision  discipline  that  is 
fundamental in fields as biometrics, industry, telecommunications or video games. In 
turn, these image feature detectors are implemented in a computer program with GUI 
for Linux called Image Feature Detector, and second scope of the project and widely 
explained in Chapter 4.

Each  chapter  of  the  memory  presents  a  particular  package  of  information 
concerning feature extraction in image processing and computer vision. In Chapter 1 
we shall view the main knowledge in which this project is developed: the computer 
vision and the image processing. It will be a global vision of the key points of these 
fields and a collection of main uses applied to the real world, and we will afterwards  
focus  in  two  subsubjects  related  with  the  project:  visual  odometry  and  template 
matching.

In Chapter 2 we will deepen in the main subject of the project, the image features. 
This chapter is developed from its origins and later referenced to more recent material. 
It will be a theoretical development prior to implementation in Chapter 4.

In the middle of the memory,  Chapter 3, we will compare the leading detectors 
viewed in Chapter 2. Since not all detectors work in the same way, the comparative is 
divided by basing on the detector kind, whether scale-variant (Harris and FAST) or 
scale-invariant (SIFT and SURF). We will see how powerful and fast detectors are and if 
they are ready to be implemented in an real-time video system.

Later, in Chapter 4 we explain the practical implementation of features detector in a 
Linux computer program. In this  chapter there are full  working implementations of 
most of the major techniques described in  Chapter 2, and applied them to process 
imagery.

Although the target of this project has been more focused in analyzing live video 

Preface xi



imagery to the later application of visual odometry, the techniques are general and can 
migrate  to  other  application  domains.  Furthermore,  there  is  a  certain  amount  of 
mathematics in the memory. And is that computer vision can be thought of as a branch 
of applied mathematics, although this does not always apply to all areas within the 
field.

I myself have already benefited much by writing this memory. Thanks to it I have 
been  able  to  introduce  me  in  fairly  grade  on  the  comprehensive  discipline  of 
computer vision and specially in its subdisciplines of feature detection and template 
matching.

Thanks to this memory I have also met the world of scientific literature, something 
that, although knowledge sources (books, university notes, media news and Internet 
articles that every day are with us) are based in great extend on these works, in my 
humble existence I only viewed them as those little references that are at the end of 
books and Wikipedia articles. I have learned to deepen on everything that is going to 
be taken into account, and that most times it will be easier than it could be at first. And 
as final lesson, I have learned to know what I want, what I need and seeking it in right 
places in a right way. And all this being as self-sufficient as possible.

About the Memory
I have tried to elaborate the memory in the clearest and most logical way. To do so I 

have put special attention in the appearance and arrangement of text and figures. This 
is  essential  to  obtain  clarity  and  increase  the  reading  and  understanding  speed, 
important aspect in academic and scientific long works like this. In addition, with a 
good  selection  of  fonts,  colors  and  arrangements  the  memory  is  visually  more 
attractive. At the end of the prefaced is explained which programs and typefaces have 
been used in the memory.

Absolutely all sources and references used in the creation of this memory, whether 
books, scientific literature, on-line documentation or Wikipedia articles, are listed in 
the Bibliography. To add clarity to the importance of each source, there are two kinds 
of  references,  explained  in  the  next  paragraph.  Among  chapters,  summarized 
fragments  of  these  sources  are  used,  and  usually  chapters  and  paragraphs  of  a 
determinate subject will begin with a reference to the original source. Also, all the 
images  than  appear  thorough  the  memory  have  the  original  source  listed  in  the 
Bibliography.

Throughout  all  the memory there are references  ([x])  to the  Bibliography. These 
references  are  classified  in  2  categories:  in  blue  ([x])  are  the  main  references, 
references that are basic for the elaboration and understanding of the project and of 
which I have took information to write the memory or to understand some element 
related.  This  references  in  most  cases  does  not  only  appear  but  are  furthermore 
explained in the paragraph or chapter with text and images. On the other hand, in 

xii Preface



green ([x]) there are the secondary references. These references are not decisive for the 
elaboration and understanding of the project and many times are references that only 
are  mentioned  without  further  explanation,  unlike  blue  references.  But  they  must 
appear during explanations to can creating a concepts and ideas net. In addition, if the 
reader wants, they allow additional investigation.

Why have I decided to make all the project (memory and computer program) in 
English? I have taken this decision, first of all, because I have a level of written English 
enough to write fairly decent the memory. I am not going to do any presentation in 
English,  so writing the memory in English  is  an acceptable task since it  does  not 
require to speak English, the hard part of learning languages. Second, the English is the 
language of the knowledge; almost all scientific literature and many technical books 
are, in its origin, in English. And third and as consequence of the former reasons, if I 
communicate in English my works will be able to arrive to more scientific audience 
than if I would write them in Spanish. As an almost engineer, I must know English, and 
hence, I have made use of it. Of course, I have used tools that have helped me to write  
a better English; beginning by the grammatical corrector of OpenOffice.org Writer, and 
afterward,  all  kind of  tools  to  find  out  if  what  I  was  writing  was  correct:  Google 
Translate,  SYSTRANet,  WordReference.com and  English Wiktionary. The memory is 
written in American English.

To write the memory I have used OpenOffice.org Writer 3.2; it allow me to fulfill 
all the needs that can appear in an academic work like this, and in addition, it is cross-
platform and free and open source software. Image edition has not been a important 
task in this project, but for some pictures and some Image Feature Detector icons I 
have used Corel Photo Paint X5 to edit and create them. The typeface used for the text 
body is URWClassico, for tittles Myriad Pro and for formulas Minion Pro.

Preface xiii

http://www.corel.com/
http://www.openoffice.org/
http://en.wiktionary.org/
http://wordreference.com/
http://www.systranet.com/
http://translate.google.com/
http://translate.google.com/




Chapter 1
1.  Introduction

Across this chapter we shall view the basic concepts in which this project is based. 
First, we shall view what is computer vision and a list with uses of this science applied 
to the real world. Subsequently, it will explain the digital image processing field, the 
brother discipline of computer vision and mother of image features detectors, the main 
subject of the project. Later, we shall view a brief explication about robotics and an 
introduction to Robolab, the University of Extremadura's robotics laboratory where this 
project has been developed. And finally, we shall view how the detection of image 
features is a valuable tool with which we can treat many problems in robotics, like to 
solve the localization of a robot, that is, visual odometry.

What Is Computer Vision
As humans, we perceive the three-dimensional structure of the world around us 

with apparent ease [1]. Think of how vivid the three-dimensional perception is when 
you look at a vase of flowers sitting on the table next to you. You can depict the shape 
and translucency of each petal through the subtle patterns of light and shading that 
play across its surface and effortlessly segment each flower from the background of the 
scene. Looking at a framed group portrait, you can easily count all of the people in the 
picture  and  even  guess  at  their  emotions  from their  facial  appearance.  Perceptual 
psychologists have spent decades trying to understand how the visual system works 
and, even though they can devise optical illusions to confirm some of its principles, a 
complete solution to this puzzle remains elusive.

Researchers in computer vision have been developing, in parallel,  mathematical 
techniques for recovering the three-dimensional shape and appearance of objects in 
imagery.  We now have  reliable  techniques  for  accurately  computing  a  partial  3D 
model of an environment from thousands of partially overlapping photographs (Figure 
1.1(a)).  Given a large enough set of views of a particular object or facade, we can 
create accurate dense 3D surface models using stereo matching (Figure 1.1(b)). We can 
track a person moving against a complex background (Figure 1.1(c)).  We can even, 
with moderate success, attempt to find and name all of the people in a photograph 
using  a  combination  of  face,  clothing,  and  hair  detection  and  recognition  (Figure 

1.  Introduction 1



1.1(d)).  However,  despite  all  of  these  advances,  the  dream of  having  a  computer 
interpret an image at the same level as a two-year old (for example, counting all of the 
animals in a picture) remains elusive. Why is vision so difficult? In part, it is because 
vision is  an  inverse  problem,  in  which we seek to recover  some unknowns given 
insufficient  information  to  fully  specify  the  solution.  We  must  therefore  resort  to 
physics-based and probabilistic  models to disambiguate between potential solutions. 
However, modeling the visual world in all of its rich complexity is far more difficult  
than, say, modeling the vocal tract that produces spoken sounds.

(a) (b)

(c) (d)

Figure  1.1:  Some  examples  of  computer  vision  algorithms  and  applications..  (a)  Structure  from  motion algorithms  can 
reconstruct a sparse 3D point model of a large complex scene from hundreds of partially overlapping photographs (Snavely,  
Seitz, and Szeliski 2006) © 2006 ACM. (b) Stereo matching algorithms can build a detailed 3D model of a building façade from 
hundreds of differently exposed photographs taken from the Internet (Goesele, Snavely, Curless et al. 2007) © 2007 IEEE. (c)  
Person tracking algorithms can track a person walking in front of a cluttered background (Sidenbladh, Black, and Fleet 2000). © 
2000 Springer. (d) Face detection algorithms, coupled with color-based clothing and hair detection algorithms, can locate and  
recognize the individuals in this image (Sivic, Zitnick, and Szeliski 2006) © 2006 Springer.

The  forward models  that  we  use  in  computer  vision  are  usually  developed  in 
physics (radiometry, optics, and sensor design) and in computer graphics. Both of these 
fields model how objects move and animate, how light reflects off their surfaces, is 
scattered by the atmosphere, refracted through camera lenses (or human eyes), and 
finally projected onto a flat (or curved) image plane. While computer graphics are not 
yet  perfect  (no  fully  computer-animated  movie  with  human  characters  has  yet 

2 1.  Introduction



succeeded at crossing the  uncanny valley1 that separates real humans from android 
robots and computer-animated humans), in limited domains, such as rendering a still 
scene composed of everyday objects or animating extinct creatures such as dinosaurs, 
the illusion of reality is perfect.

In computer vision, we are trying to do the inverse, i.e., to describe the world that 
we  see  in  one  or  more  images  and  to  reconstruct  its  properties,  such  as  shape, 
illumination, and color distributions. It is amazing that humans and animals do this so 
effortlessly, while computer vision algorithms are so error prone. People who have not 
worked  in  the  field  often  underestimate  the  difficulty  of  the  problem.  This 
misperception that  vision  should  be easy dates  back to the early days  of  artificial 
intelligence,  when  it  was  initially  believed  that  the  cognitive  (logic  proving  and 
planning)  parts  of  intelligence were  intrinsically  more difficult  than the perceptual 
components.

Computer vision is being used today in a wide variety of real-world applications, 
which include:

 Optical character recognition (OCR): reading handwritten postal codes on letters 
(Figure 1.2(a)) and automatic number plate recognition (ANPR);

 Machine inspection:  rapid  parts  inspection  for  quality  assurance  using  stereo 
vision with specialized illumination to measure tolerances on aircraft wings or 
auto body parts (Figure 1.2(b)) or looking for defects in steel castings using X-ray 
vision;

 Retail: object recognition for automated checkout lanes (Figure 1.2(c));

 3D  model  building  (photogrammetry):  fully  automated  construction  of  3D 
models from aerial photographs used in systems such as Google Maps or Bing 
Maps;

 Medical  imaging:  registering pre-operative  and intra-operative  imagery  (Figure 
1.2(d)) or performing long-term studies of people’s brain morphology as they age;

 Automotive safety:  detecting unexpected obstacles such as pedestrians on the 
street, under conditions where active vision techniques such as radar or lidar do 
not  work  well  (Figure  1.2(e);  see  also  Miller,  Campbell,  Huttenlocher  et  al. 
(2008); Montemerlo, Becker, Bhat et al. (2008); Urmson, Anhalt, Bagnell et al. 
(2008) for examples of fully automated driving);

 Match move: merging computer-generated imagery (CGI) with live action footage 
by tracking feature points in the source video to estimate the 3D camera motion 
and shape of the environment. Such techniques are widely used in Hollywood 
(e.g., in movies such as Jurassic Park) (Roble 1999; Roble and Zafar 2009); they 
also  require  the  use  of  precise  matting  to  insert  new  elements  between 

1The  term  uncanny  valley was  originally  coined  by  roboticist  Masahiro  Mori  as  applied  to  robotics  (Mori  1970).  It  is  also 
commonly applied to computer-animated films such as Final Fantasy (2001) or Beowulf (2007) (Geller 2008).



foreground and background elements (Chuang, Agarwala, Curless et al. 2002).

 Motion capture: using retro-reflective markers viewed from multiple cameras or 
other vision-based techniques to capture actors for computer animation;

(a) (b)

(c) (d)

(e) (f )

Figure  1.2:  Some  industrial  applications  of  computer  vision:  (a)  optical  character  recognition  (OCR)  
http://yann.lecun.com/exdb/lenet/; (b) mechanical inspection http://www.cognitens.com/; (c) retail  http://www.evoretail.com/; 
(d) medical imaging http://www.clarontech.com/; (e) automotive safety  http://www.mobileye.com/; (f ) surveillance and traffic 
monitoring http://www.honeywellvideo.com/, courtesy of Honeywell International Inc.

 Surveillance:  monitoring for intruders, analyzing highway traffic (Figure 1.2(f)), 
and monitoring pools for drowning victims;

 Fingerprint recognition and biometrics: for automatic access authentication as 
well as forensic applications.

http://www.honeywellvideo.com/
http://www.mobileye.com/
http://www.clarontech.com/
http://www.evoretail.com/
http://www.cognitens.com/
http://yann.lecun.com/exdb/lenet/


Computer vision is at an extraordinary point in its development  [2]. The subject 
itself has been latent since the 1960s, but it is only recently that it has been possible to 
build useful computer systems using ideas from computer vision. This raising has been 
driven by several trends: Computers and imaging systems have become very cheap. 
Not all that long ago, it  took tens of thousands of dollars to get good digital color 
images; now it takes a few hundred, at most. Not all that long ago, a color printer was 
something one found in few, if any, research labs; now they are in many homes. This 
means  it  is  easier  to  do research.  It  also  means  that  there  are  many people  with 
problems to which the methods of computer vision apply. Our understanding of the 
basic geometry and physics underlying vision and, what is more important, what to do 
about it, has improved significantly. We are beginning to be able to solve problems 
that lots of people care about, but none of the hard problems have been solved and 
there  are  plenty  of  easy  ones  that  have  not  been  solved  either  (to  keep  one 
intellectually fit while trying to solve hard problems). It is a great time to be studying 
this subject.

What Is Digital Image Processing
An image may be defined as a two-dimensional function, f(x,y), where x and y are 

spatial (plane) coordinates, and the amplitude of  f at any pair of coordinates (x, y) is 
called the  intensity or  gray level of the image at that point  [3]. When  x, y, and the 
intensity values of f are all finite, discrete quantities, we call the image a digital image. 
The field of digital image processing refers to processing digital images by means of a 
digital computer. Note that a digital image is composed of a finite number of elements,  
each of which has a particular location and value. These elements are called pixels.

Vision is the most advanced of our senses, so it is not surprising that images play 
the single most important role in human perception. However, unlike humans, who 
are limited to the visual band of the electromagnetic (EM) spectrum, imaging machines 
cover almost the entire EM spectrum, ranging from gamma to radio waves. They can 
operate  on  images  generated  by  sources  that  humans  are  not  accustomed  to 
associating  with  images.  These  include  ultrasound,  electron  microscopy,  and 
computer-generated images. Thus, digital image processing encompasses a wide and 
varied field of applications.

There is no general agreement among authors regarding where image processing 
stops  and  other  related  areas,  such  as  image  analysis  and  computer  vision,  start. 
Sometimes a distinction is made by defining image processing as a discipline in which 
both the input and output of a process are images. We believe this to be a limiting and 
somewhat artificial boundary. For example, under this definition, even the trivial task 
of computing the average intensity of an image (which yields a single number) would 
not be considered an image processing operation. On the other hand, there are fields 
such as computer vision whose ultimate goal is to use computers to emulate human 
vision, including learning and being able to make inferences and take actions based on 
visual inputs. This area itself is a branch of artificial intelligence (AI) whose objective is 



to emulate human intelligence. The field of AI is in its earliest stages of infancy in 
terms  of  development,  with  progress  having  been  much  slower  than  originally 
anticipated. The area of image analysis (also called image understanding) is in between 
image processing and computer vision.

There are no clear-cut boundaries in the continuum from image processing at one 
end to computer vision at the other. However, one useful paradigm is to consider three 
types  of  computerized  processes  in  this  continuum:  low-,  mid-,  and  high-level 
processes.  Low-level  processes  involve  primitive  operations  such  as  image 
preprocessing to reduce noise, contrast enhancement, and image sharpening. A low-
level process is characterized by the fact that both its inputs and outputs are images. 
Mid-level processing on images involves tasks such as segmentation (partitioning an 
image into regions or objects), description of those objects to reduce them to a form 
suitable for computer processing, and classification (recognition) of individual objects. 
A mid-level process is characterized by the fact that its inputs generally are images, but 
its outputs are attributes extracted from those images (e.g., edges, contours, and the 
identity of individual objects). Finally, higher-level processing involves “making sense” 
of an ensemble of recognized objects, as in image analysis, and, at the far end of the 
continuum, performing the cognitive functions normally associated with vision.

Based on the preceding comments, we see that a logical place of overlap between 
image processing and image analysis is the area of recognition of individual regions or 
objects  in  an  image.  Thus,  what  we  call  digital  image  processing encompasses 
processes  whose  inputs  and  outputs  are  images  and,  in  addition,  encompasses 
processes that extract attributes from images, up to and including the recognition of 
individual objects.  As an illustration to clarify these concepts, consider the area of 
automated analysis of text. The processes of acquiring an image of the area containing 
the text, preprocessing that image, extracting (segmenting) the individual characters, 
describing the characters in a form suitable for computer processing, and recognizing 
those individual characters are in the scope of what we call digital image processing. 
Making sense of the content of the page may be viewed as being in the domain of 
image  analysis  and  even  computer  vision,  depending  on  the  level  of  complexity 
implied by the statement “making sense”.

As will become evident shortly, digital image processing, as we have defined it, is 
used successfully in a broad range of areas of exceptional social and economic value.

Robotics and Robolab
Based  on  the  Robotics  Institute  of  America  (RIA)  definition:  "A  robot  is  a 

reprogrammable multifunctional manipulator designed to move material, parts, tools, 
or specialized devices through variable programmed motions for the performance of a 
variety of tasks”.

From the engineering point of view [4], robots are complex, versatile devices that 
contain a mechanical structure, a sensory system, and an automatic control system. 



Theoretical  fundamentals  of  robotics  rely  on the results  of  research  in  mechanics, 
electric, electronics, automatic control, mathematics, and computer sciences.

This project is aimed to introduce and compare image features detectors to be used 
in visual odometry in mobile robots. But actually, it is a general purpose project which 
the application of the results is only restricted to any system with Linux, even not being 
a  robot  of  any  kind.  In  addition,  the  uses  of  image  feature  detectors  has  many 
applications  more  than  visual  odometry:  object  recognition,  object  count  or 
biometrics, among others uses.

Although  the  subject  of  the  project  is  not  related  directly  with  robotics,  the 
academic context where this  project  is  developing does:  Robolab is  the laboratory 
where the project tutor Pedro Núñez currently works and where the same approach 
explained in the project is used in their robots.

Robolab
The Robolab laboratory [42] is the Robotics and Artificial Vision Laboratory, located 

at  the  Polytechnic  College  of  the  University  of  Extremadura,  Cáceres.  Since  its 
foundation in 1999, it is devoted to conduct research in Intelligent Mobile Robotics 
and Computer Vision.

Figure 1.3:  The three Robolabs robots using the RoboEx platform. The central robot, in addition to the rest of devices,  has  
mounted a forklift

The laboratory  has  issued  diverse  researching  publications.  Recently,  they  have 
published two works which are the base for future researching developments: RobEx:  
an  open-hardware  robotics  platform [17] and  RoboComp:  a  Tool-based  Robotics  
Framework [18]. These works introduce a global platform for mobile robots, including 
hardware  and  software  specifications.  The  first  work  explains  the  RobEx platform 
(Figure 1.3),  a little metallic base with wheels where a laptop, a  head with stereo 
cameras, and another devices like forklift (like that of the central robot of Figure 1.4), 



lasers  or  claws  can  be  mounted.  The  second  work  explains  the  RoboComp 
component-oriented robotics software framework. This framework boosts distributed 
software development and collaboration by providing an easy method of integrating 
components made by different RoboComp users. It also provides a set of tools that 
makes  component  creation  and  management  an  easy  task.  It  is  the  software  that 
controls the robots introduced in RoboEx work.

Many of the experiments took out in the laboratory have been realized thanks to the 
three robots constructed by the own laboratory that uses the RoboEx platform (Figure 
1.4). These robots can operate in manual mode throughout a joystick or in automatic 
mode,  where the robots can detect  obstacles and dodge them. The skill  to dodge 
obstacles is one of the current researching works.

Visual Odometry
Odometry is the use of data from diverse kind of sensors (usually rotary encoders 

linked to wheels, lasers or cameras) to estimate change in position over time [50]. It is 
used by robots, whether they be legged or wheeled, to estimate approximately their 
position relative to a starting location. This method is very sensitive to errors due to the 
integration of velocity measurements over time to give position estimates. Rapid and 
accurate data collection, equipment calibration, and processing are required in most 
cases for odometry to be used effectively.

When the information comes from cameras and images are used to do the spacial 
estimation  instead  of  wheels  or  another  devices,  we  are  speaking  about  visual  
odometry.  Visual  odometry  [16] is  the  process  of  determining  a  visual  sensor 
orientation and position in 3D space from a sequence of images, or simply put, motion 
estimation using visual information only. To us, humans, as well as many other living 
beings,  our  perception  system  provides  the  main  sensory  input  for  navigation 
purposes. For example, it has been shown that honey bees [19] use optical flow [20] as 
an essential navigation aid. It is not only that visual inputs are naturally suitable for 
navigation, but also visual inputs allows a variety of useful tasks. For example, besides 
navigating the environment the robot can generate a 3D reconstruction, detect objects 
of interest, classify the terrain, etc. All of those tasks can performed with low-cost and 
low-power consumption, which is ideal for robotics platforms.

In Robotics research, the use of visual input for navigation purposes started late in 
the 1970’s ([21]). Among the first uses of cameras for mobile robot navigation can be 
traced back to Moravec’s [22], who used several cameras to navigate a robotic cart in a 
room. However, the use of vision in mobile robotics has been hindered by the limited 
computational power. Typical image processing and understanding tasks require much 
computational power due to the amount of data in images, which was not available 
until recent advances in hardware Computer Vision algorithms.

Nowadays,  visual  odometry  is  attracting  much  attention  in  the  Robotics  and 
Computer  Vision  communities.  Several  real-time  visual  odometry  implementations 



have been reported and results are very promising. However, much work remains to 
be done in this  area.  Several  improvements and enhancements could be added to 
current systems to allow them to scale for very large terrains. The main issue is the 
ability to deal with unbounded accumulated error induced by the iterative nature of 
motion estimation and exaggerated with the large amount of data in images and the 
associated noise.

One  of  the  main  approaches  used  to  acquire  images  and  use  them  in  visual 
odometry is through stereo cameras, like the robots used by RoboLab (Figure 1.4). In 
stereo vision [48], two cameras, displaced horizontally from one another are used to 
obtain differing views on a scene, in a manner similar to human binocular vision. The 
cameras are then modeled as a perspective view whereby the two cameras will see 
slightly different projections of the world view. By comparing these two images, the 
relative depth information can be obtained, in the form of a disparity map, which is  
inversely proportional to the distance to the object.

Figure 1.4: RoboLab robots use stereo cameras to estimate its position through visual odometry (among others approaches).

To compare the images, the two views must be transformed as if there were being 
observed from a common projective camera, this can be achieved, by projecting the 
right camera to the left camera's position or viceversa, and the relative shifts between 
the two images can then be seen to be due to parallax. Alternately both camera views 
may be transformed to an arbitrary location in 3D space, as long as the front face of  
the  images  to  be  compared  is  visible  from  this  location,  and  that  occlusion  or 
transparency does not interfere with the calculation.

Stereo vision finds many applications in automated systems. Stereo vision is highly 
important in fields such as robotics, to extract information about the relative position 
of 3D objects in the vicinity of autonomous systems. Other applications for robotics 
include object recognition, where depth information allows for the system to separate 



occluding image components, such as one chair in front of another, which the robot 
may otherwise not be able to distinguish as a separate object by any other criteria.

Template matching
Template matching [53] is a technique in digital image processing to find parts of an 

image which match a template image in another image. It has many uses on computer 
vision and we are interested in used it to compare detected features in images and use 
the result  as  input  data  for  the visual  odometry  of  mobile  robots.  This  use is  not 
implemented in the project since it is out of its main scope, but the SIFT and SURF 
detectors  than  are  introduced  in  Chapter  2 and  compared  in  Chapter  3 generate 
descriptors than are ready to be compared in a template matching way.

Template  matching  can  be  subdivided  in  two  approaches:  template-based  and 
feature-based  matching.  The  template-based,  or  global  approach,  uses  the  entire 
template, with generally a sum-comparing metric (using SAD, SSD, cross-correlation, 
etc.)  and determines  the best  location  by testing all  or  a  sample of  the candidate 
locations within the search image. This approach is only useful when the searched 
object in a image is almost the same than the template since template-base matching is 
very intolerant to changes. On the other hand, the feature-based approach uses the 
image features, such as edges or corners, as the primary match-measuring metrics to 
find the best matching location of the template in the source image. In our case, we 
are interested in the second approach, in which template matching is used in SIFT and 
SURF detectors to find similar features in other images by comparing the descriptors of 
detected features. In the next Chapter 2 is described what is a descriptor.



Chapter 2
2. Image Features, Descriptors and Detectors

In  this  chapter  we  shall  see  the  concept  of  image  feature,  an  useful  piece  of 
information extracted from an image which it let us make understand to the computer 
how humans see, and then, to make the computer recognize and count objects and 
process image information in a useful way as a human would do it, but with the speed 
of computers and some other advantages.

We shall see the different kinds of features and how to obtain and filter between 
potentials interesting features and residual or not time-perdurable features. Later, we 
discuss the ways to show extracted features in a graphical way. We can do it whether  
as a whole transformed image where only interesting parts are visible or outlined, or as 
an  image with marked points  with  arrows where the arrow's  size  -the magnitude- 
indicates the size or importance of that point.

Finally,  we  shall  view  what  is  a  feature  detector  and  shall  review  the  most 
important/used  detectors  with  a  shallow  mathematical  explication.  These  feature 
detectors will be compared and tested in the Chapter 3, and they are implemented in 
the Chapter 4, where the computer program Image Featured Detector is showed and 
explained.

What Is a Feature
When we have an image, that is, a set of pixels with a given intensity value, the 

concept of feature is used to denote a set of pixels which is relevant in some way from 
a human view point. They describe the elementary characteristics of the image such as 
the shape, the color, the texture or the motion, although we will be mainly interested 
in the shape. Edges, borders and other points which are non-or-little variant features to 
be  tracked  in  an  image  sequence  will  be  the  worth  features  for  us.  Then,  these 
extracted features, as processed data that has become useful information, can be used 
for solving different tasks or problems. Most of these problems where image features 
are used to solve them are object recognition by template matching and object count.

Let's fix in the image of Figure 2.1. On it we can see buildings, cars, a cross shape 
monument in the middle, two traffic lights at both sides of the image and a red bus at 

2. Image Features, Descriptors and Detectors 11



the right. The most of the shapes that we can see in the image are edges -mainly 
straight lines and some curves-, corners and some objects with a non very well defined 
shape or very complex one -trees-. This delimiters shapes are filled by surfaces with 
textures -the asphalt and the wall of the buildings-. These edges, corners and, in lesser 
extent, textures are the basic pieces that we can use to depict the image in a objective 
way. Hence, the features of the image are all these shapes described above that we 
shall  consider  with  useful  information  to  define  an  image.  The  color  is  another 
property  that  we  can  take  into  account  to  extract  features,  but  due  to  the 
computational cost of using color images, in most cases by using grayscale images is 
enough to extract a good feature sample set.

Figure 2.1: Illustrative image in which we can see different shapes.

The complexity of these features can vary from just simple points –the result of a 
general  neighborhood operation– to more elaborated  shapes  where different  basic 
points are used to create a new feature –specific structures in the image itself such as  
borders or edges or more complex structures such as objects–.

The feature concept is very general and the choice of a right feature detector in a 
particular computer vision system may be highly dependent on the specific problem at 
hand. Likewise, the correct  adjusts of feature parameters can be a critical  issue. In 
some cases, a higher level of detail in the description of a feature may be necessary for 
solving the problem, but this comes at the cost of having to deal with more data and 
more demanding processing.

What Is a Descriptor
Some features detectors are ready to use the output information that generate to 

searching similar detected features in other images. This is the case of SIFT and SURF 
detectors  commented  in  the  next  subchapter,  but  also  that  of  other  detectors  less 
efficient like LESH (Local Energy based Shape Histogram,  [40]) or GLOH (Gradient 
Location and Orientation Histogram, [41]).

12 2. Image Features, Descriptors and Detectors



When we works with detectors that generate descriptors [1], after detecting features, 
we  must  match  them,  i.e.,  we  must  determine  which  features  come  from 
corresponding locations in different images. In some situations, as for video sequences 
or for stereo pairs that have been rectified, the local motion around each feature point 
may be mostly translational. In this  case,  simple error metrics,  such as the sum of 
squared differences or normalized cross-correlation can be used to directly compare 
the intensities in small patches around each feature point. (The comparative study by 
Mikolajczyk and Schmid (2005), uses cross-correlation). Because feature points may 
not  be  exactly  located,  a  more  accurate  matching  score  can  be  computed  by 
performing incremental motion refinement, but this can be time consuming and can 
sometimes even decrease performance (Brown, Szeliski, and Winder 2005).

In most cases, however, the local appearance of features will change in orientation 
and scale, and sometimes even undergo affine deformations. Extracting a local scale, 
orientation, or affine frame estimate and then using this to resample the patch before 
forming the feature descriptor is thus usually preferable.

Even after compensating for these changes, the local appearance of image patches 
will usually still vary from image to image. The accuracy of each detector matching 
descriptors will determinate their effectiveness and efficiency. We will compare this 
efficiency with SIFT and SURF descriptors in Chapter 3.

Visual descriptors
When we speak about descriptor we can also refer to the visual representation of 

the data output of what the detector has considered useful information basing on the 
parameters we have set.

Features detectors carry out local neighborhood operations into an image. Then, we 
can differentiate detectors depend on whether the feature detector produces as output: 
they can return a new image with the same dimensions (Figure 2.2(a)) that can acts as 
a mask, or they produce a set of pointers with information –usually vectors– (Figure 
2.2(b)) situated in determinate pixels of the image, instead of a new image.

The first ones are called  feature image descriptors because the output shows the 
detected  features  like  an  image  mask  (this  is  the  case  of  the  OpenCV  Harris 
implementation used in the computer program of Chapter 4). And the second ones are 
called vector descriptors or simply descriptors since they are a set of points indicating 
and interesting region into the image that additionally some kinds of detectors add a 
vector with their corresponding magnitude and a angle.

In the case of vector descriptors, the feature detector as a result produces interesting  
points situated in determinate pixels of the image. Although local decisions are made, 
the output from a feature detection step does not need to be a binary image. The result 
is  often  represented  in  coordinates  sets  (connected  or  unconnected)  of  the  image 
points where features have been detected. In addition, some detectors calculate extra 

2. Image Features, Descriptors and Detectors 13



information in form of vector with start point the coordinates of the feature point. The 
FAST detector generates a set of coordinates without any additional information.

Another use of vectors in feature descriptors is to indicate the confidence of the 
detected feature. As they are marked with an importance label, in later data processing 
we could choice the features with high confidence value. This enables that a new 
feature  descriptor  being computed from several  descriptors,  computed at  the same 
image point but at different scales, or from different but neighboring points, in terms of  
a  weighted  average  where  the  weights  are  derived  from  the  corresponding 
confidences. These kind of feature descriptors are use by the SIFT and SURF detectors.

(a) (b)

Figure2.2 (a) Output image showing detected corners by the Harris OpenCV implementation. (b). Image with superimposed 
vector descriptors calculated by the OpenCV SURF detector implementation indicating the magnitude and direction of the  
feature points.

Main Detectors Overview
The last main concept that appears in this chapter is that of feature detector. As its  

name indicates, the detector is a mathematical algorithm that in a discrete image signal 
finds  and isolates some determinate feature as it  could be edges,  corners or time-
invariable zones to be tracked in image sequences. The response of the algorithm will 
give a new image or a set of points indicating where the detected features are situated 
into the image, as we saw in the previous section. We will see 6 feature detectors: 
Robert  cross,  Sobel,  Harris  (and Shi  and Tomasi),  FAST,  SIFT and SURF.  They are 
chosen  by  its  efficacy  or  by  its  base  use in  others  detectors.  Although the Image 
Feature Detector computer program that we shall view in Chapter 4 only implements 

14 2. Image Features, Descriptors and Detectors



the last 4 detectors, the Robert cross and Sobel ones are the base of Harris detector 
(and edge detection in general); for that reason are explained in the chapter.

Throughout  the evolution  of  the computer  vision science several  approaches to 
detect features have been developed. Essentially, the boundary of an object is a step-
change in the intensity levels of each pixel. By basing on this promise, the simplest 
feature  detector  that  we  could  develop  would  be  a  edge  detector  based  on  this 
intensity level change between pixels. We will consider the edge is at the position of 
the step-change. Then, to detect the edge position we can use first-order differentiation 
since as we are searching changes in the intensity, first-order differentiation gives a 
proportional response to the change and no response when the signal does not alter.

A change in intensity can be revealed by differencing adjacent points. Differencing 
horizontally adjacent points will detect vertical changes in intensity and is often called 
a horizontal edge detector. From now, as we will define different differencing mapping 
from one vector space to another, we will refer to these transformations as operators. A 
horizontal operator will not show horizontal changes in intensity since the difference 
is zero. As such, the gradient along the line normal to the edge slope can be computed 
in terms of the derivatives along orthogonal axes:

G x , y =
∂P x , y 
∂ x

cos
∂P x , y 
∂ y

sin (2.1)

The equation above describes the generation of an edge gradient in terms of a row 
gradient and a column gradient. This expressed as a discrete signal and applied to an 
image P the action of the horizontal edge detector gives the difference between two 
horizontally adjacent points, detecting the vertical edges Ex as:

Exx,y = |Px,y – Px+1,y| ∀x  1, ∈ N – 1; y  1, ∈ N (2.2)

In  order  to  detect  horizontal  edges  we  need  a  vertical  edge  detector  which 
differences vertically adjacent points. This will determine horizontal intensity changes, 
but not vertical ones, so the vertical edge detector detects the horizontal edges, Ey, 
according to:

Eyx,y = |Px,y – Px,y+1| ∀x  1, ∈ N; y  1, ∈ N – 1 (2.3)

Figures 2.3(b) and (c) show the application of the vertical and horizontal operators 
to the image of the square in  Figure 2.3(a). Note that in  Figure 2.3(b) the left-hand 
vertical edge appears to be beside the square as result of the differencing process. This 
is thus because we consider the edge is at the position of the step-change. Then, the 
result is showed in the previous pixel before the step-change. Likewise, the upper edge 
in Figure 2.3(b) appears above the original square.

2. Image Features, Descriptors and Detectors 15



(a) (b) (c) (d)

Figure2.3: First-order edge detection.

Combining the two detectors gives an operator E that can detect both vertical and 
horizontal edges:

Ex,y = |Px,y – Px+1,y + Px,y – Px,y+1| ∀x, y  1, ∈ N – 1 ⇔

Ex,y = |2 × Px,y – Px+1,y – Px,y+1| ∀x, y  1, ∈ N – 1 (2.4)

Equation 2.3 gives the coefficients of the differencing matrix that appears in Figure 
2.4, which can be convolved with an image to detect all the edge points, although in 
this case the algebraic approach is easier. Note that the bright point in the lower right 
corner of the edges of the square in Figure 2.3(d) is  brighter than the other points. This 
is because it is the only point to be detected as an edge by both the vertical and the 
horizontal operators and is therefore brighter than the other edge points. In contrast, 
the top left hand corner point is detected by neither operator and so does not appear in 
the final image.

M=[−2 −1
−1 0 ]

Figure2.4: Matrix for first-order operator.

There are several edge operators based on first-order difference that often appear on 
literature. First, as an introduction mode we shall slightly view the Robert cross and 
Sobel operators. Afterwards, we shall view the interesting detectors for the project. We 
will begin with Harris; it is based in the Sobel operator. FAST, SIFT and SURF detectors 
use  another  techniques  furthermore  than  differentiation.  For  that,  they  are  a  little 
different in relation to Harris and previous detectors.

The Roberts  cross  and Sobel  detectors  mainly  detect  edges.  Harris,  in  addition, 
detects corners. FAST only detect corners and SIFT and SURF detect any feature in an 
image susceptible of being a good point to be searched in another scales or variations 
of the image.

16 2. Image Features, Descriptors and Detectors



Roberts Cross Operator
The Roberts cross operator, released by Lawrence G. Roberts in 1963 in the work 

Machine Perception Of Three-Dimensional Solids [7],  was one of the earliest  edge 
detection operators. It  implements a version of basic first-order edge detection and 
uses two matrices which difference pixel values in a diagonal manner, as opposed to 
along the axes directions. The two matrices are called M+ and M– and are given in 
Figure 2.5.

Ex,y = max {|M+  ∗ Px,y|, | M–  ∗ Px,y|} ∀x, y  1, ∈ N – 1 (2.5)

In implementation, the maximum value delivered by application of these matrices 
is stored as the value of the edge at that point. The edge point Ex,y is then the maximum 
of the two values derived by convolving the two matrices at an image point Px,y:

M=[1 0
0 −1] M−=[ 0 1

−1 0]
Figure2.5: Matrices for Roberts cross operator.

The application of the Roberts cross operator to the image of the square is shown in 
Figure 2.6. The two matrices provide the results in Figures 2.6(b) and (c) and the result 
delivered by the Roberts operator is shown in Figure 2.6(d). Note that the corners of 
the  square  now appear  in  the  edge  image,  as  result  of  the  diagonal  differencing 
operation, whereas they were less visible in Figure 2.6(d) (where the top left corner did 
not appear).

(a) (b) (c) (d)

Figure2.6: Steps of applying Roberts cross operator.

An alternative  to  taking  the  maximum is  simply  to  add  the  results  of  the  two 
matrices together to combine horizontal and vertical edges. There are, of course, more 
varieties  of  edges  and it  is  often  better  to  consider  the two matrices  as  providing 
components  of  an  edge vector:  the strength of  the edge along the horizontal  and 
vertical  axes.  These give components of  a  vector  and can be added in a vectorial 
manner (which is perhaps more usual for the Roberts operator). The edge magnitude is 

2. Image Features, Descriptors and Detectors 17



the length of the vector and the edge direction is the vector’s orientation, as shown in 
Figure 2.7.

Figure 2.7: Roberts cross operator represented as a vector

Sobel Operator
Everytime  we  are  going  to  carry  out  any  edge  detection  we  will  have  to  do 

differentiation operations. Since they detects any change, they will also detect noise 
changes, as well as any kind of step-like changes in image intensity. It is hence a good 
idea to add averaging within the edge detection operations. We can then extend the 
vertical  matrix,  Mx,  along  three  rows,  and  the  horizontal  matrix,  My,  along  three 
columns, as it is showed in Figure 2.8. This first step of doing a larger differentiation is 
called Prewitt edge detection operator  [8] and we will use it as a base to the Sobel 
operator, operator released by Irwin Sobel in 1968 [9].

M x=[1 0 −1
1 0 −1
1 0 −1] M y=[ 1 1 1

0 0 0
−1 −1 −1]

Figure2.8: Matrices for first order differentiation in 3×3 windows.

With this we get the rate of intensity change along each axis. As you can remember, 
this is the vector illustrated in Figure 2.7: the edge magnitude M is the length of the 
vector and the edge direction θ is the angle of the vector:

M=M xx , y 
2M y x , y 

2 (2.6)

x , y=arctanM y x , y 
M x x , y  (2.7)

When  applied  to  the  image  of  the  square  Figure  2.9(a),  we  obtain  the  edge 
magnitude  and  direction,  Figures  2.9(b) and  (d),  respectively  (where  (d) does  not 
include the border  points,  only the edge direction  at  processed points).  The edge 
direction  in  Figure  2.9(d) is  shown measured in  degrees  where  0° and 360°  are 

18 2. Image Features, Descriptors and Detectors



horizontal,  to the right,  and 90° is  vertical,  upwards.  Though the regions of  edge 
points are wider due to the operator’s averaging properties, the edge data is clearer 
than the earlier first-order operator, highlighting the regions where intensity changed in 
a more reliable form (compare, for example, the upper left corner of the square which 
was not revealed earlier). The vector representation of the Figure 2.9(c) shows that the 
edge  direction  data  is  clearly  less  well  defined  at  the  corners  of  the  square  (as 
expected, since the first-order derivative is discontinuous at these points).

If we double the weight at the central pixels for both horizontal and vertical Prewitt 
matrices,  it  gives  the Sobel  edge detection  operator  which,  again,  consists  of  two 
masks to determine the edge in vector form. The Sobel operator was the most popular 
edge detection operator until  the development of edge detection techniques with a 
theoretical basis. It become popular because it gave, overall, a better performance than 
other contemporaneous edge detection operators, such as the Prewitt operator.

(a) (b)

(c) (d)

Figure2.9: Result (b) of applying Prewitt operator to the original image (a) and the vector representation (c) with its angle value 
in degrees (d).

The coefficients for the Sobel operator for a window of 3×3 are those of the Figure 
2.10:

M x=[1 0 −1
2 0 −2
1 0 −1] M y=[ 1 2 1

0 0 0
−1 −2 −1]

Figure2.10: Matrices for Sobel operator for 3×3 windows.

2. Image Features, Descriptors and Detectors 19



The  window  size  of  3×3  is  the  standard  formulation  for  the  Sobel  matrices, 
although is also possible to form larger window sizes of 5×5 or 7×7, but it requires 
further calculations to find out the values of the new matrices. In the bibliography 
there are books where you could find a thoroughly explanation.

A larger edge detection matrix involves more smoothing and reduce noise but as a 
drawback edges loss its definition and become blurry. If we are not interested in the 
edge definition, the estimate of edge direction can be improved with more smoothing, 
since this one is particularly sensitive to noise.

Since the Prewitt operator allows that edge direction data can be arranged to point 
in different ways, we can do the same with the Sobel operator. If  the matrices are 
inverted, the edge direction will be inverted in both axes. If only one of the matrices is 
inverted, then the measured edge direction will be inverted in such axis. This gives 
four possible directions for measurement of the edge direction provided by the Sobel 
operator. The figures illustrated in  Figures 2.11(a) and  (b) show the vectors with the 
matrices inverted. On the other hand, by swapping the Sobel templates, the measured 
edge direction can be arranged to be normal to the edge itself as opposed to tangential 
data along the edge, as Figures 2.11(c) and (d) show.

(a) (b)

(c) (d)

Figure2.11: Different arrangements of the edge directions.

20 2. Image Features, Descriptors and Detectors



Harris Detector
Harris is an edge and corner detector released by Chris Harris and Mike Stephens in 

1988 in the work  A Combined Corner And Edge Detector  [10]. The detector tries to 
solve link problems between points into textures and surfaces where edge limits are 
not well defined, as it happens with another detector as Canny [39] or previous ones. 
Therefore,  it  proposes  not  consider  all  the  image  features  as  edges  and  treating 
problematic surfaces as features points.

Moravec Revisited

Harris operator takes advantage of Moravec corner detector [22]. This last detector 
works  by  considering  a  local  window in  the  image,  and  determining  the  average 
changes of image intensity that result from shifting the window by a small amount in 
various directions. Mathematically, we can express this change E as the sum of squared 
differences (SSD) between the original window and the shifted by (x,y) one:

Ex , y=∑
u ,v
wu ,v∣I xu , yv−I u, v∣2

where w is the a rectangular image window (1 into the window and 0 outside). The 
shifts (x,y) that are evaluated are (1,0), (1,1), (0,1) and (-1,1), that is,  horizontal and 
vertical axis and its respective diagonals. When we have calculate all SSD of a point in 
the 4 directions we will find a feature of interest if the minimal calculated SSD of that 
point is a local maximum in the image above some threshold value.

Based on this premise we will carry out some changes to improve the detector:

1.  The response is  anisotropic  because only a discrete set  of  shifts  at  every 45 
degrees is considered. By performing an analytic expansion about the shift origin we 
can cover all possible shifts:

Ex , y=∑
u ,v
wu ,v∣I xu , yv−I u, v∣2=∑

u ,v
wu, v∣xX yYO x 2 , y2∣2

where the first gradients are approximated by

X=I∗−1,0 ,1≈∂ I /∂ x=I ∂ x

Y=I∗−1,0 ,1T≈∂ I /∂ y=I ∂ y

Hence, for small shifts, E can be written

E x , y =Ax 22CxyBy 2

2. Image Features, Descriptors and Detectors 21



where

A=X 2∗w

B=Y 2∗w

C=XY ∗w

2. The response is noisy because the window is binary and rectangular. Using a 
smooth circular window, for example a Gaussian, we can improve the response:

wu, v=exp−u2v2/22

3. The operator responds too early to edges because only the minimum of E is taken 
into account. Reformulating the corner measure to make use of the variation of E with 
the direction of shift resolves this.

We can express the change E for the shift (x,y) as a matrix multiplication:

E x , y =[x y ]M T

where the 2×2 symmetric matrix M is

M=[A C
C B]=[ X 2∗w XY ∗w

XY ∗w Y 2∗w ]
Note  that  E  is  closely  related  to  the  local  autocorrelation  function,  with  M 

describing  its  shape  at  the  origin  (explicitly,  the  quadratic  terms  in  the  Taylor 
expansion). Let  α,  β be the eigenvalues of M.  α and  β will  be proportional to the 
principal  curvatures  of  the  local  auto-correlation  function,  and  form a  rotationally 
invariant description of M. There are three cases to be considered:

A.  If  both  curvatures  are  small,  that  is,  α≈0  and β≈0, so  that  the  local 
autocorrelation function is flat, then the windowed image region is of approximately 
constant intensity (ie. arbitrary shifts of the image patch cause little change in E);

B. If one curvature is high and the other low, that is, α≈0 or β≈0 and the other is 
high, so that the local auto-correlation function is ridge shaped, then only shifts along 
the ridge (ie. along the edge) cause little change in E: this indicates an edge;

C. If both curvatures are high, so that the local autocorrelation function is sharply 
peaked, then shifts in any direction will increase E: this indicates a corner.

22 2. Image Features, Descriptors and Detectors



Corner/edge Response Function

We do not only need corner and edge classification regions, but also a measure of 
corner and edge quality or response. The size of the response will be used to select  
isolated corner pixels and to thin the edge pixels.

Let us first consider the measure of corner response, R, which we require to be a 
function of  α and β  alone, on grounds of rotational invariance. It is attractive to use 
trace of M, Tr(M), and determinant of M, Det(M), in the formulation as this avoids the 
explicit eigenvalue decomposition of M, thus

Tr M ==AB

Det M ==AB−C 2

Consider the following formulation for the corner response

R=−k 2=Det M −k Tr2M 

Contours of constant R are shown by the fine lines in Figure 2.12. k is an arbitrary 
value that usually takes 0.04. R is positive in the corner region, negative in the edge 
regions,  and small  in hit  flat  region. Note that  increasing the contrast  (i.e.  moving 
radially away from the origin) in all cases increases the magnitude of the response. The 
flat region is specified by Tr falling below some selected threshold.

Figure  2.12.  Auto-correlation  principal  curvature  spaceheavy  lines  give  corner/edge/flat  classification,  fine  lines  are 
equiresponse contours.

R is the value that the Harris implementation of the Image Feature Detector will 
show when the Harris operator is applied to an image.

2. Image Features, Descriptors and Detectors 23



Shi and Tomasi Detector
The Shi and Tomasi corner detector is similar to Harris but with one difference that 

in some cases  can be improve the results.  It  was release by Jianbo Shi and Carlo 
Tomasi in 1994 in the work Good Features to Track [11]. The authors showed that is 
sometimes more reliable to use the smallest eigenvalue of M, that is, min(α, β), as the 
corner strength function than the R corner response.

FAST
FAST  (Features  from Accelerated  Segment  Test)  is  a  corner  detection  algorithm 

released  by  Edward  Rosten  and  Tom  Drummond  in  2006  in  the  work  Machine 
learning for high-speed corner detection [14]. This detector is reported to produce very 
stable features, as we will view below.

FAST  is  a  kind  of  corner  detector  that  is  arrange  within  the  AST  (Accelerated 
Segment Test) category [49]. AST is a modified version of the SUSAN corner criterion 
[23]. This last one states that in an image we can find features by segmenting image 
regions in circles of radio r around a determinate pixel p and evaluating whether it is a 
feature depending on the intensity  I of the adjacent pixels in comparison with the 
intensity  Ic of the center one. AST states that the pixels to be evaluated are only the 
content pixels in a Bresenham circle, unlike the SUSAN detector in which all the pixels 
of the circle are evaluated.

Therefore, FAST considers a feature in a determinate pixel p if n contiguous pixels 
are all brighter than the nucleus by at least t or all darker than the nucleus by t. Larger 
radiuses of the test mask tend to be more noise and blur resistant while they are more 
computationally  expensive.  The  choice  of  the  order  in  which  each  pixels  of  the 
circumference  are  tested  is  decisive.  This  order  is  a  so  called  Twenty  Questions 
problem (name taken from an American TV parlor game), that is,  by arranging the 
pixel kind by building short decision trees in a way that will split the number of kinds 
roughly in  half  or  third each time.  In  this  way,  FAST in the most  computationally 
efficient corner detector available so far.

Figure 2.13. 16 pixels Bresenham circumference. The highlighted squares are the pixels used in the corner detection.

24 2. Image Features, Descriptors and Detectors



Although the value in pixels of the radio,  r, can in principle take any value, FAST 
uses only a value of 3 (corresponding to a circle of 16 pixels circumference as that of 
Figure  2.13),  and  tests  show that  the  best  results  are  achieved  with  a  number  of 
highlighted contiguous pixels,  n, being 9. This value of  n is the lowest one at which 
edges are not detected, since we are not interested in detect edges, only corners. The 
order in which pixels are tested is determined by a ID3 algorithm from a training set of 
images. ID3 (Iterative Dichotomiser 3) is an algorithm used to generate decision trees, 
decision  support  tools  that  use  a  tree-like  graph  or  model  of  decisions  and  their 
possible consequences, including chance event outcomes, resource costs, and utility.

(a) (b)

(c)

Figure 2.14. Over a candidate pixel p (a), the pixels of the Bresenham circumference are clasified in one of the three sorts: darker 
(in black), similar (in gray) and brighter (in white) (b). In (c) the pixels of the circumference are showed as a row.

For each location on the circle x ∈ {1..16}, the state, S, of the pixel at that position 
relative to p (denoted by p→x) can be:

d (darker), Ip x→  ≤ Ip − t

Sp x→  = s (similar), Ip − t < Ip x→  < Ip + t

b (brighter), Ip + t ≤ Ip x→

Choosing an  x and computing Sp→x for all  p∈P (the set of all  pixels in a image) 
arranges P into three subsets, Pd, Ps, Pb, where each p is assigned to Psp→x. The sort of 
the pixels are visually expressed in the Figure 2.14.

Let Kp be a boolean variable which is true if p is a corner and false otherwise. After 
to have classified the kind of the 16 pixels, the ID3 algorithm begins by selecting the x 
which yields  the most  information about  whether  the candidate  pixel  is  a  corner, 
measured by the entropy of Kp.

2. Image Features, Descriptors and Detectors 25



The entropy of K for the set P is:

H P=cc  log2cc −c log 2c−c log2 c (2.8)

where c=∣{p∣K p is true}∣ (number of corners)

and c=∣{p∣K p is false }∣ (number of non corners)

The choice of x then yields the information gain:

H P−H Pd−H P s −H Pb (2.9)

Having selected the  x which yields the most information, the process is applied 
recursively on all three subsets i.e. xb is selected to partition Pb in to Pb,d, Pb,s, Pb,b, xs is 
selected to partition Ps in to Ps,d,  Ps,s,  Ps,b and so on, where each x is chosen to yield 
maximum information about the set it is applied to. The process terminates when the 
entropy of a subset is zero. This means that all p in this subset have the same value of 
Kp, i.e. they are either all corners or all non-corners. This is guaranteed to occur since 
K is an exact function of the learning data.

This  creates  a decision tree which can correctly classify all  corners seen in the 
training set and therefore (to a close approximation) correctly embodies the rules of the 
chosen FAST corner detector. This decision tree is then converted into C-code, creating 
a long string of nested if-then-else statements which is compiled and used as a corner 
detector.

Non-maximal suppression

Since the segment test does not compute a corner response function, non maximal 
suppression can not be applied directly to the resulting features. Consequently, a score 
function, V, must be computed for each detected corner, and non-maximal suppression 
applied  to  this  to  remove  corners  which  have  an  adjacent  corner  with  higher  V. 
Although there are several intuitive defnitions for V, due to speed of computation we 
assum that V is the sum of the absolute difference between the pixels in the contiguous 
arc and the centre pixel:

V=max  ∑x∈Sbright∣I px−I p∣−t , ∑x∈Sdark∣I p−I p x∣−t (2.10)

where

Sbright={x∣I p xI pt }
Sdark={x∣I p xI p−t }

(2.11)

The non-maximal suppression stage is optional and in the Image Feature Detector 

26 2. Image Features, Descriptors and Detectors



implementation of the FAST detector it can be deactivate, although we will view many 
not interesting points around a one corner.

SIFT
Scale-invariant feature transform (SIFT) is an algorithm in computer vision to detect 

and describe local features in images. The algorithm was published by David Lowe in 
1999 in the work Object recognition from local scale-invariant features [12] and from 
2000 it is patented in the US by the University of British Columbia [45]. 

Unlike the previous seen detectors, SIFT works in a different way and has more 
elavorated  steps.  The features  detected  by SIFT  are  invariant  to  image scaling and 
rotation, and partially invariant to change in illumination and 3D camera viewpoint. 
They  are  well  localized  in  both  the  spatial  and  frequency  domains,  reducing  the 
probability  of  disruption  by  occlusion,  clutter,  or  noise.  The  features  are  highly 
distinctive, which allows a single feature to be correctly matched with high probability 
against a large database of features, providing a basis for object and scene recognition.

The cost  of  extracting  these features  is  minimized by taking a  cascade filtering 
approach, in which the more expensive operations are applied only at locations that 
pass an initial test. Following are the major stages of computation used to generate the 
set of image features:

1. Scale-space extrema detection: The first stage of computation searches over all 
scales  and  image  locations.  It  is  implemented  efficiently  by  using  a  difference-of-
Gaussian function to identify potential interest points that are invariant to scale and 
orientation.

2.  Keypoint  localization:  At  each  candidate  location,  a  detailed  model  is  fit  to 
determine  location  and  scale.  Keypoints  are  selected  based  on  measures  of  their 
stability.

3. Orientation assignment: One or more orientations are assigned to each keypoint 
location based on local image gradient directions. All future operations are performed 
on image data that has been transformed relative to the assigned orientation, scale, and 
location for each feature, thereby providing invariance to these transformations.

4. Keypoint descriptor: The local image gradients are measured at the selected scale 
in the region around each keypoint. These are transformed into a representation that 
allows for significant levels of local shape distortion and change in illumination.

Detection of scale-space extrema

As described in the introduction, we will detect keypoints using a cascade filtering 
approach that uses efficient algorithms to identify candidate locations. The first stage of 
keypoint detection is to identify locations and scales that can be repeatably assigned 
under differing views of the same object. Detecting locations that are invariant to scale 

2. Image Features, Descriptors and Detectors 27



change of the image can be accomplished by searching for stable features across all 
possible scales, using a continuous function of scale known as scale space (Witkin, 
1983, [24]).

The scale space of an image is defined as a function,  L(x, y,  σ), that is produced 
from the convolution of a variable-scale Gaussian, G(x, y, σ), with an input image, I(x,  
y):

L x , y ,=G x , y ,∗ I x , y 

where ∗ is the convolution operation in x and y, and

G x , y ,=
1

22 e
−x2 y2 /22

It has been shown by Koenderink (1984, [25]) and Lindeberg (1994, [26]) that under 
a  variety  of  reasonable  assumptions  the  only  possible  scale-space  kernel  is  the 
Gaussian function.

To efficiently detect stable keypoint locations in scale space, we will use scale-space 
extrema in the difference-of-Gaussian function convolved with the image,  D(x, y,  σ), 
which can be  computed from the  difference  of  two  nearby  scales  separated  by a 
constant multiplicative factor k:

D x , y , = G x , y , k−G x , y ,∗I x , y
= L x , y ,k−L x , y ,

(2.12)

There are a number of reasons for choosing this function. First, it is a particularly 
efficient function to compute, as the smoothed images, L, need to be computed in any 
case for scale space feature description, and D can therefore be computed by simple 
image subtraction.

In addition, the difference-of-Gaussian function provides a close approximation to 
the scale-normalized Laplacian of Gaussian, σ∇2G, as studied by Lindeberg. Lindeberg 
showed that the normalization of the Laplacian with the factor σ2 is required for true 
scale invariance. In detailed experimental comparisons, Mikolajczyk (2002, [27]) found 
that  the  maxima  and  minima  of  σ∇2G produce  the  most  stable  image  features 
compared to a range of other possible image functions, such as the gradient, Hessian, 
or Harris corner function.

The relationship between D and σ∇2G can be understood from the heat diffusion 
equation (parametrized in terms of σ rather than the more usual t=σ2):

∂G
∂
=∇2G

28 2. Image Features, Descriptors and Detectors



From  this,  we  see  that  ∇2G can  be  computed  from  the  finite  difference 
approximation to ∂G/∂σ, using the difference of nearby scales at kσ and σ:

∇ 2=
∂G
∂
≈
G x , y , k−G x , y ,

k−

and therefore,

G x , y ,k−G x , y ,≈k−12∇2G

This shows that when the difference-of-Gaussian function has scales differing by a 
constant factor it already incorporates the σ2 scale normalization required for the scale-
invariant Laplacian. The factor (k−1) in the equation is a constant over all scales and 
therefore does not influence extrema location. The approximation error will go to zero 
as  k goes to 1, but in practice we have found that the approximation has almost no 
impact  on  the  stability  of  extrema  detection  or  localization  for  even  significant 
differences in scale, such as k=√2.

Figure 2.15. For each octave of scale space, the initial image is repeatedly convolved with Gaussians to produce the set of scale  
space images shown on the left. Adjacent Gaussian images are subtracted to produce the difference-of-Gaussian images on the  
right. After each octave, the Gaussian image is down-sampled by a factor of 2, and the process repeated.

An efficient approach to construction of  D(x, y,  σ) is shown in  Figure 2.15. The 
initial image is incrementally convolved with Gaussians to produce images separated 
by a constant factor k in scale space, shown stacked in the left column. We choose to 
divide each octave of scale space (i.e., doubling of  σ) into an integer number,  s, of 
intervals, so k=21/s. We must produce s+3 images in the stack of blurred images for 
each octave, so that final extrema detection covers a complete octave. Adjacent image 
scales are subtracted to produce the difference-of-Gaussian images shown on the right. 

2. Image Features, Descriptors and Detectors 29



Once a complete octave has been processed, we resample the Gaussian image that 
has twice the initial value of σ (it will be 2 images from the top of the stack) by taking 
every second pixel in each row and column. The accuracy of sampling relative to σ is 
no different  than for the start  of  the previous octave,  while computation is  greatly 
reduced.

In order to detect the local maxima and minima of D(x, y, σ), each sample point is 
compared to its eight neighbors in the current image and nine neighbors in the scale 
above and below (see  Figure 2.16). It is selected only if it is larger than all of these 
neighbors or smaller than all of them. The cost of this check is reasonably low due to 
the fact that most sample points will be eliminated following the first few checks.

Figure 2.16. Maxima and minima of the difference-of-Gaussian images are detected by comparing a pixel (marked with X) to its 
26 neighbors in 3x3 regions at the current and adjacent scales (marked with circles).

An important issue is to determine the frequency of sampling in the image and scale 
domains that is needed to reliably detect the extrema. Unfortunately, it turns out that 
there is no minimum spacing of samples that will detect all extrema, as the extrema 
can be arbitrarily close together. We can determinate the best settings experimentally, 
by studding a range of sample frequencies y checking which of them give us the best 
results within a realistic simulation.

Accurate keypoint localization

Once a keypoint candidate has been found by comparing a pixel to its neighbors, 
the next step is to perform a detailed fit to the nearby data for location, scale, and ratio 
of principal curvatures. This information allows points to be rejected that have low 
contrast (and are therefore sensitive to noise) or are poorly localized along an edge.

We will  use the Taylor expansion (up to the quadratic terms) of the scale-space 
function, D(x, y, σ), shifted so that the origin is at the sample point:

D x =D
∂DT

∂ x
x

1
2
xT
∂2D
∂ x2 x (2.13)

where D and its derivatives are evaluated at the sample point and x=(x, y,  σ)T is the 

30 2. Image Features, Descriptors and Detectors



offset from this point. The location of the extremum, x , is determined by taking the 
derivative of this function with respect to x and setting it to zero, giving

x=−
∂2D−1

∂ x2

∂D
∂ x

(2.14)

The  Hessian  and  derivative  of  D are  approximated  by  using  differences  of 
neighboring  sample  points.  The  resulting  3x3  linear  system  can  be  solved  with 
minimal cost. If the offset x  is larger than 0.5 in any dimension, then it means that the 
extremum lies closer  to a different  sample point.  In  this  case,  the sample point is 
changed and the interpolation performed instead about that point. The final offset x  is 
added  to  the  location  of  its  sample  point  to  get  the  interpolated  estimate  for  the 
location of the extremum.

The function value at the extremum, D( x ), is useful for rejecting unstable extrema 
with low contrast. This can be obtained by substituting Ecuation 2.14 into 2.13, giving

D  x =D
1
2
∂DT

∂ x
x

All extrema with a value of |D( x )| less than 0.03 are discarded (as before, we 
assume image pixel values in the range [0,1]).

For stability, it is not sufficient to reject keypoints with low contrast. The difference-
of-Gaussian function will  have a strong response along edges,  even if  the location 
along the edge is poorly determined and therefore unstable to small amounts of noise.

A poorly  defined  peak  in  the  difference-of-Gaussian  function  will  have  a  large 
principal curvature across the edge but a small one in the perpendicular direction. The 
principal curvatures can be computed from a 2×2 Hessian matrix, H, computed at the 
location and scale of the keypoint:

H=[Dxx D xyD xy D yy] (2.15)

The derivatives are estimated by taking differences of neighboring sample points.

The eigenvalues of H are proportional to the principal curvatures of D. Borrowing 
from the approach used in the Harris detector, we can avoid explicitly computing the 
eigenvalues, as we are only concerned with their ratio. Let  α be the eigenvalue with 
the largest magnitude and be the smaller one. Then, we can compute the sum of the 
eigenvalues from the trace of H and their product from the determinant:

2. Image Features, Descriptors and Detectors 31



Tr H =DxxD yy=
Det H =DxxD yy−D xy

2=

In the unlikely event that the determinant is negative, the curvatures have different 
signs so the point is discarded as not being an extremum. Let r be the ratio between 
the largest magnitude eigenvalue and the smaller one, so that α = rβ. Then,

Tr H 2

Det H 
=
2


=
r 2

r 2 =
r12

r

which depends only on the ratio of the eigenvalues rather than their individual values. 
The quantity  (r+1)2/r is  at  a minimum when the two eigenvalues are equal and it 
increases with  r.  Therefore, to check that the ratio of principal curvatures is below 
some threshold, r, we only need to check

Tr H 2

Det H 

r12

r

This  is  very  efficient  to  compute,  with  less  than  20  floating  point  operations 
required to test each keypoint. The experiments in this paper use a value of r=10, 
which eliminates keypoints that have a ratio between the principal curvatures greater 
than 10. The transition from Figure 2.17(c) to (d) shows the effects of this operation.

Figure 2.17. This figure shows the stages of keypoint selection. (a) The 233x189 pixel original image. (b) The initial 832 keypoints  
locations at maxima and minima of the difference-of-Gaussian function. Keypoints are displayed as vectors indicating scale, 
orientation, and location. (c) After applying a threshold on minimum contrast, 729 keypoints remain. (d) The final 536 keypoints 
that remain following an additional threshold on ratio of principal curvatures.

32 2. Image Features, Descriptors and Detectors



Orientation assignment

By  assigning  a  consistent  orientation  to  each  keypoint  based  on  local  image 
properties, the keypoint descriptor can be represented relative to this orientation and 
therefore  achieve  invariance  to  image  rotation.  This  approach  contrasts  with  the 
orientation invariant descriptors of Schmid and Mohr (1997, [28]), in which each image 
property  is  based  on  a  rotationally  invariant  measure.  The  disadvantage  of  that 
approach  is  that  it  limits  the  descriptors  that  can  be  used  and  discards  image 
information by not requiring all measures to be based on a consistent rotation.

The scale of the keypoint is used to select the Gaussian smoothed image, L, with the 
closest scale, so that all computations are performed in a scale-invariant manner. For 
each  image  sample,  L(x,  y),  at  this  scale,  the  gradient  magnitude,  m(x,  y),  and 
orientation, θ(x, y), is precomputed using pixel differences:

mx , y = Lx1, y −L x −1, y2Lx , y1−Lx , y −12

x , y =arctan L x , y1−Lx , y− 1
Lx1, y −Lx−1, y  

The magnitude and direction calculations for the gradient are done for every pixel 
in  a neighboring region around the keypoint  in  the Gaussian-blurred image L.  An 
orientation histogram with 36 bins is formed, with each bin covering 10 degrees. Each 
sample  in  the  neighboring  window added  to  a  histogram bin  is  weighted  by  its 
gradient magnitude and by a Gaussian-weighted circular window with a σ that is 1.5 
times that  of  the scale of  the keypoint.  The peaks in this  histogram correspond to 
dominant orientations. Once the histogram is filled, the orientations corresponding to 
the highest peak and local peaks that are within 80% of the highest peaks are assigned 
to the keypoint.  In  the case of  multiple  orientations  being assigned,  an  additional 
keypoint is created having the same location and scale as the original keypoint for 
each additional orientation.

The local image descriptor

The previous operations have assigned an image location, scale, and orientation to 
each keypoint. These parameters impose a repeatable local 2D coordinate system in 
which to describe the local image region, and therefore provide invariance to these 
parameters. The next step is to compute a descriptor for the local image region that is 
highly distinctive yet is as invariant as possible to remaining variations, such as change 
in illumination or 3D viewpoint.

Figure  2.18 illustrates  the  computation  of  the keypoint  descriptor.  First  a  set  of 
orientation  histograms  are  created  on  4x4  pixel  neighborhoods  with  8  bins  each. 
These histograms are computed from magnitude and orientation values of samples in a 
16×16 region around the keypoint such that each histogram contains samples from a 
4×4  subregion  of  the  original  neighborhood  region.  The  magnitudes  are  further 

2. Image Features, Descriptors and Detectors 33



weighted by a Gaussian function with σ  equal to one half the width of the descriptor  
window. The descriptor then becomes a vector of all the values of these histograms. 
Since there are 4×4=16 histograms each with 8 bins the vector has 128 elements. 
This vector is then normalized to unit length in order to enhance invariance to affine 
changes in illumination. To reduce the effects of non-linear illumination a threshold of 
0.2 is applied and the vector is again normalized.

Figure 2.18. A keypoint descriptor is created by first computing the gradient magnitude and orientation at each image sample  
point in a region around the keypoint location, as shown on the left. These are weighted by a Gaussian window, indicated by the  
overlaid circle. These samples are then accumulated into orientation histograms summarizing the contents over 4x4 subregions, 
as shown on the right, with the length of each arrow corresponding to the sum of the gradient magnitudes near that direction  
within the region. This figure shows a 2 × 2 descriptor array computed from an 8 × 8 set of samples, whereas the experiments in  
this paper use 4 × 4 descriptors computed from a 16 × 16 sample array.

Although the dimension of the descriptor,  i.e.  128,  seems high descriptors with 
lower dimension than this don't perform as well across the range of matching tasks 
and the computational cost remains low due to the approximate BBF method used for 
finding the nearest-neighbor. Longer descriptors continue to do better but not by much 
and there is an additional danger of increased sensitivity to distortion and occlusion. It 
is also shown that feature matching accuracy is above 50% for viewpoint changes of 
up to 50 degrees. Therefore SIFT descriptors are invariant to minor affine changes. To 
test  the distinctiveness of the SIFT descriptors, matching accuracy is also measured 
against  varying  number  of  keypoints  in  the testing  database,  and  it  is  shown that 
matching  accuracy  decreases  only  very  slightly  for  very  large  database  sizes,  thus 
indicating that SIFT features are highly distinctive.

SURF
SURF (Speeded Up Robust Features) is a robust image detector and descriptor, first 

presented by Herbert  Bay et al.  in 2003 in the work  Speeded-Up Robust Features  
(SURF) [13]. It is partly inspired by the SIFT descriptor. The standard version of SURF is 
several times faster than SIFT and claimed by its authors to be more robust against 
different image transformations than SIFT. SURF is based on sums of approximated 2D 

34 2. Image Features, Descriptors and Detectors



Haar wavelet responses and makes an efficient use of integral images. As basic image 
features  it  uses  a  Haar  wavelet  approximation of  the determinant  of  Hessian  blob 
detector.

The  approach  for  interest  point  detection  uses  a  very  basic  Hessian-matrix 
approximation.  This  lends  itself  to  the  use  of  integral  images,  which  reduces  the 
computation time drastically.  Integral  images  fit  in  the more general  framework of 
boxlets.

Integral Images

In order to make the article more self-contained, we briefly discuss the concept of 
integral images. They allow for fast computation of box type convolution filters. The 
entry of an integral image IΣ(x) at a location x=(x, y)⊤represents the sum of all pixels in 
the input image I within a rectangular region formed by the origin and x.

I∑ x=∑
i=o

ix

∑
j=o

jx

I i , j  (2.16)

Once the integral image has been computed, it takes three additions to calculate the 
sum of the intensities over any upright, rectangular area (see Figure 2.19). Hence, the 
calculation time is independent of its size. This is important in our approach, as we 
use big filter sizes.

Figure 2.19. Using integral images, it takes only three additions and four memory accesses to calculate the sum of intensities 
inside a rectangular region of any size.

The SURF detector is based on the Hessian matrix because of its good performance 
in  accuracy.  More  precisely,  we  detect  blob-like  structures  at  locations  where  the 
determinant is maximum. In contrast to the Hessian-Laplace detector by Mikolajczyk 
and  Schmid  [33],  we  rely  on  the  determinant  of  the  Hessian  also  for  the  scale 
selection, as done by Lindeberg [26].

Given a point  x=(x, y) in an image I, the Hessian matrix  H(x,σ) in  x at scale  σ is 
defined as follows

2. Image Features, Descriptors and Detectors 35



H x ,=[Lxx x , Lxy x ,Lxy x , L yy x ,] (2.17)

where Lxx(x, y) is the convolution of the Gaussian second order derivative ∂2

∂x2 g   with 
the image I in point x, and similarly for Lxy(x, σ) and Lyy(x, σ).

Figure 2.20. Using integral images, it takes only three additions and four memory accesses to calculate the sum of intensities 
inside a rectangular region of any size.

Gaussians are optimal for scale-space analysis [25] [26], but in practice they have to 
be discretised and cropped (Figure 2.21(a) and (b)). This leads to a loss in repeatability 
under image rotations around odd multiples of π/4 . This weakness holds for Hessian-
based detectors in general.  Figure 2.20 shows the repeatability rate of two detectors 
based  on  the  Hessian  matrix  for  pure  image  rotation.  The  repeatability  attains  a 
maximum around multiples of π/2 .

(a) (b) (c) (d)

Figure 2.21: The (discretised and cropped) Gaussian second order partial derivative in y- (Lyy) (a) and xy-direction (Lxy) (b), the 
SURF approximation for the second order Gaussian partial derivative in y-(Dyy) (c) and xy-direction (Dxy) (d). The gray regions are 
equal to zero.

 This is due to the square shape of the filter. Nevertheless, the detectors still perform 
well, and the slight decrease in performance does not outweigh the advantage of fast 

36 2. Image Features, Descriptors and Detectors



convolutions brought by the discretisation and cropping. As real filters are non-ideal in 
any  case,  and  given  Lowe's  success  with  his  LoG  approximations,  we  push  the 
approximation for the Hessian matrix even further with box filters (Figure 2.21(c) and 
(d)). These approximate second order Gaussian derivatives and can be evaluated at a 
very low computational cost using integral images. The calculation time therefore is 
independent of the filter size. As shown in the results section and  Figure 2.20, the 
performance is comparable or better than with the discretised and cropped Gaussians.

The 9×9 box filters in  Figure 2.21 are approximations of a Gaussian with  σ=1.2 
and represent the lowest scale (i.e. highest spatial resolution) for computing the blob 
response maps. We will denote them by Dxx, Dyy, and Dxy. The weights applied to the 
rectangular regions are kept simple for computational efficiency. This yields

det H approxi=DxxD yy−wDxy
2 (2.18)

The relative weight w of the filter responses is used to balance the expression for 
the Hessian's determinant. This is needed for the energy conservation between the 
Gaussian kernels and the approximated Gaussian kernels,

w=
∣L xy1.2∣F∣D yy 9∣F
∣L yy 1.2∣F∣Dxy 9∣F

=0.912...≃0.9 (2.19)

where |x|F is the Frobenius norm. Notice that for theoretical correctness, the weighting 
changes depending on the scale. In practice, we keep this factor constant, as this did 
not have a significant impact on the results in our experiments.

The  scale  space  is  divided  into  octaves.  An  octave  represents  a  series  of  filter 
response maps obtained by convolving the same input image with a filter of increasing 
size. In total, an octave encompasses a scaling factor of 2 (which implies that one 
needs to more than double the filter size.

Figure 2.22. Instead of iteratively reducing the image size (left), the use of integral images allows the up-scaling of the filter at  
constant cost (right).

2. Image Features, Descriptors and Detectors 37



One of the key differences of the SURF detector compared to SIFT is that the SIFT 
detector, as it calculates respective scale-spaces, it resamples the original image to a 
minor size, unlike the SURF detector, that resamples the filter to an higher size, Figure 
2.22. In this way, the computational cost of resampling the filter instead of the image is 
littler and at once more robust in presence of noise or affine transformations.

In order to localize interest points in the image and over scales, a non-maximum 
suppression  in  a  3×3×3  neighborhood  is  applied.  Scale  space  interpolation  is 
especially important in our case, as the difference in scale between the first layers of 
scale  every  octave is  relatively  large.  We can see in  Figure  2.23 that  most  of  the 
features can be detected in the first 3 octaves. More octaves may be analyzed, but the 
number of detected interest points per octave decays very quickly.

Figure 2.23. Histogram of the detected scales. The number of detected interest points per octave decays quickly.

Orientation Assignment

SURF describes the distribution of the intensity content within the interest point 
neighborhood, similar to the gradient information extracted by SIFT and its variants. 
We build on the distribution of first order Haar wavelet responses in x and y direction 
rather  than  the  gradient,  exploit  integral  images  for  speed,  and  use  only  64 
dimensions.  This  reduces  the time for  feature  computation and matching,  and has 
proven  to  simultaneously  increase  the  robustness.  Furthermore,  we present  a  new 
indexing  step  based  on  the  sign  of  the  Laplacian,  which  increases  not  only  the 
robustness of the descriptor, but also the matching speed (by a factor of two in the best 
case).

In order to be invariant to image rotation, we identify a reproducible orientation for 
the interest points. For that purpose, we first calculate the Haar wavelet responses in x 
and y direction within a circular neighborhood of radius 6s around the interest point, 
with  s the scale at which the interest point was detected. The sampling step is scale 
dependent and chosen to be s. In keeping with the rest, also the size of the wavelets 
are scale dependent and set to a side length of 4s. Therefore, we can again use integral 

38 2. Image Features, Descriptors and Detectors



images for fast filtering. The used filters are shown in Figure 2.24. Only six operations 
are needed to compute the response in x or y direction at any scale.

(a) (b)

Figure 2.24. Haar wavelet filters to compute the responses in x (a) and y direction (b). The dark parts have the weight -1 and the 
light parts +1.

Once the wavelet responses are calculated and weighted with a Gaussian (σ=2s, 
with s the scale at which the interest point was detected) centered at the interest point, 
the  responses  are  represented  as  points  in  a  space  with  the  horizontal  response 
strength along the abscissa and the vertical response strength along the ordinate. The 
dominant orientation is  estimated by calculating the sum of all  responses within a 
sliding  orientation  window  of  size  π/3,  Figure  2.25.  The  horizontal  and  vertical 
responses within the window are summed. The two summed responses then yield a 
local  orientation  vector.  The  longest  such  vector  over  all  windows  defines  the 
orientation of the interest point.

Figure 2.25. Orientation assignment: A sliding orientation window of size π/3 detects the dominant orientation of the Gaussian 
weighted Haar wavelet responses at every sample point within a circular neighborhood around the interest point.

Descriptor based on Sum of Haar Wavelet Responses

For the extraction of the descriptor, the first step consists of constructing a square 
region centered around the interest point and oriented along the orientation selected 

2. Image Features, Descriptors and Detectors 39



in  the previous section.  The size of  this  window is  20s.  Examples  of  such square 
regions are illustrated in Figure 2.26.

Figure 2.26. Detail of a scene showing the size of the oriented descriptor window at different scales.

The region is split up regularly into smaller 4×4 square sub-regions. This preserves 
important  spatial  information.  For  each  sub-region,  we  compute  Haar  wavelet 
responses at 5×5 regularly spaced sample points. For reasons of simplicity, we call dx 

the Haar wavelet response in horizontal direction and dy the Haar wavelet response in 
vertical direction (filter size 2s), see Figure 2.24 again. "Horizontal" and "vertical" here 
is defined in relation to the selected interest point orientation (see  Figure 2.27). For 
efficiency reasons, the Haar wavelets are calculated in the unrotated image and the 
responses are then interpolated, instead of actually rotating the image. To increase the 
robustness towards geometric deformations and localization errors, the responses  dx 

and dy are first weighted with a Gaussian (σ=3.3s) centered at the interest point.

Figure 2.27. To build the descriptor, an oriented quadratic grid with 4×4 square sub-regions is laid over the interest point (left).  
For each square, the wavelet responses are computed. The 2×2 sub-divisions of each square correspond to the actual fields of  
the descriptor. These are the sums dx, |dx|, dy, and |dy|, computed relatively to the orientation of the grid (right).

40 2. Image Features, Descriptors and Detectors



Then, the wavelet responses  dx and dy are summed up over each sub-region and 
form a first set of entries in the feature vector. In order to bring in information about the 
polarity of the intensity changes, we also extract the sum of the absolute values of the 
responses, |dx| and |dy|. Hence, each sub-region has a four-dimensional descriptor 
vector  v for  its  underlying  intensity  structure  v=∑d x ,∑ dy ,∑∣d x∣ ,∑∣d y∣ , 
concatenating this for all 4×4 sub-regions, this results in a descriptor vector of length 
64. The wavelet responses are invariant to a bias in illumination (offset). Invariance to 
contrast (a scale factor) is achieved by turning the descriptor into a unit vector.

Figure 2.28 shows the properties of the descriptor for three distinctively different 
image intensity patterns within a sub-region. One can imagine combinations of such 
local intensity patterns, resulting in a distinctive descriptor.

Figure 2.28. The descriptor entries of a sub-region represent the nature of the underlying intensity pattern. Left: In case of a 
homogeneous region, all values are relatively low. Middle: In presence of frequencies in x direction, the value of Σ|dx| is high, but 
all others remain low. If the intensity is gradually increasing in x direction, both values  Σ|dx| and Σ|dx| are high.

2. Image Features, Descriptors and Detectors 41





Chapter 3
3. Comparing Image Descriptors: Proofs and Results

After viewing a summary of the detectors working, we shall view the performance 
of each one. Since the four detectors do not working in the same way, the comparison 
can not be done with the same conditions for the four detectors.

Harris and FAST operators are aimed to mainly detect corners. They simply shows in 
an image where are corners. Because of the relative little number of operations, these 
detectors are computationally little costly. FAST is the faster detector of all, and can 
even be implemented for real time image sequences in low-end computers.

On the other hand, SIFT and SURF detectors are a little bit different from Harris and 
FAST operators. SIFT and SURF work with the concept of scale-invariant; they are able 
to  detect  and  select  a  good  feature  point  set  (not  only  corners),  save  the  feature 
parameters of the set in a size-independent format and to find these detected features 
in  another  image,  although this  image is  (partially)  rotated,  scaled,  warped,  has  a 
different illumination, more noise or there are more objects than the original image. 
SIFT and SURF are object matching focused and have the necessary tools to run this 
task, that is, they elaborated descriptors (the identity card of each feature that has been 
founded in an image) that are stored to be compared by the other basic tool of space-
invariant detectors, a matching engine that decides whether some feature is the same 
than  another.  The  logarithm  of  these  detectors  looks  for  features  at  the  original 
resolution image but also in down-sampled versions,  in the so called space-scales. 
Because  the  algorithm must  rescale  the image  and have  to  calculate  each feature 
descriptor,  scale-invariant  detectors  as  SIFT  or  SURF  are  generally  much  more 
computationally expensive than Harris or FAST.

Due to the above explained, the detectors are compared in pairs based on their 
nature, Harris vs. FAST and SIFT vs. SURF. In the comparative, time performance and 
number of features detected are tested. In addition, the detectors are put to test with 
rotated, scaled, point of view changed, blur and noise image sets. In addition, in the 
SIFT vs. SURF comparative, the quality of the descriptors is tested and the true positive 
rate is showed in an ROC graphic.

The Harris vs. FAST and SIFT vs. SURF comparatives are a summarize of the FAST 
[14] and SURF [13] scientific presentation articles, respectively. In the Harris vs. FAST 

3.Comparing Image Descriptors: Proofs and Results 43



comparative,  the Differential  of  Gaussian  operator,  the  one used  by  SIFT  and  the 
SUSAN operator (1993, [23]), not explained in this project, also appear. In the second 
comparative,  furthermore  than  the  difference  of  Gaussians  (SIFT)  and  Fast  Harris 
operators (SURF) also appear the Hessian-Laplace and Harris-Laplace operators, from 
the Hessian-Affine (2002,  [29]) and Harris-Affine (2005,  [27])  space-scale detectors, 
both created by K. Mikolajczyk et al..

Harris vs. FAST

Timing Results
Timing tests were performed on a 2.6GHz Opteron and an 850MHz Pentium III 

processor. The timing data is taken over 1500 monochrome fields from a PAL video 
source (with a resolution of 768×288 pixels). The learned FAST detectors for n=9 and 
12 have been compared to the FAST autors implementation of the Harris and DoG 
(difference  of  Gaussians,  the  approach  used  by  SIFT)  and  to  the  reference 
implementation of SUSAN [23].

As can be seen in Table 3.1, FAST in general offers considerably higher performance 
than the other tested feature detectors, and the learned FAST performs up to twice as 
fast as the handwritten version. Importantly, for n=9 is the most reliable of the FAST 
detectors. On modern hardware, FAST consumes only a fraction of the time available 
during  video  processing,  and  on  low power  hardware,  it  is  the  only  one  of  the 
detectors tested which is capable of video rate processing at all.

Detector
Opteron 2.6GHz Pentium III 850MHz

Time (ms) Time (%) Time (ms) Time (%)

FAST n=9 (non-max suppression) 1.33 6.65 5.29 26.5

FAST n=9 (raw) 1.08 5.40 4.34 21.7

FAST n=12 (non-max suppression) 1.34 6.70 4.60 23.0

FAST n=12 (raw) 1.17 5.85 4.31 21.5

Harris 24.0 120 166 830

DoG (SIFT) 60.1 301 345 1280

SUSAN 7.58 37.9 27.5 137.5

Table 3.1. Timing results for a selection of feature detectors run on fields (768x288) of a PAL video sequence in milliseconds, and 
as a percentage of the processing budget per frame. Note that since PAL and NTSC, DV and 30Hz VGA (common for webcams)  
have  approximately  the  same  pixel  rate,  the  percentages  are  widely  applicable.  Approximately  500  features  per  field  are  
detected.

Repeatability Test Conditions
Although there is a vast body of work on corner detection, there is much less on the 

subject of comparing detectors. Mohannah and Mokhtarian [31] evaluate performance 

44 3.Comparing Image Descriptors: Proofs and Results



by warping test  images in an affine manner by a known amount.  They define the 
“consistency of corner numbers” as

CCN=100×1.1∣−nw−no∣ ,

where  nw is the number of  features in the warped image and  no is the number of 
features in the original image. They also define accuracy as

ACU=100×

na
no

na
n g

2 ,

where ng are the number of “ground truth” corners (marked by humans) and na is the 
number of matched corners compared to the ground truth. This unfortunately relies on 
subjectively made decisions.

Trajkovic  and Hedley (1998,  [32])  define stability  to  be the number  of  “strong” 
matches (matches detected over three frames in their tracking algorithm) divided by the 
total number of corners. This measurement is clearly dependent on both the tracking 
and matching methods used, but has the advantage that it can be tested on the date 
used by the system.

When measuring reliability, what is important is if the same real-world features are 
detected from multiple views [33]. This is the definition which will be used here. For 
an image pair, a feature is “detected” if it is extracted in one image and appears in the 
second. It is “repeated” if it is also detected nearby in the second. The repeatability is 
the ratio of  repeated detected features.  In  [33],  the test  is  performed on images of 
planar  scenes  so  that  the  relationship  between  point  positions  is  a  homography 
(invertible transformation from the real projective plane to the projective plane that 
maps straight lines to straight lines). Fiducial markers (reference points and lines) are 
projected on to the planar scene to allow accurate computation of this.

By modeling the surface as planar and using flat textures, this technique tests the 
feature detectors' ability to deal with mostly affine warps (since image features are 
small)  under  realistic  conditions.  We use  a  3D surface  model  to  compute  where 
detected features should appear in other views (illustrated in  Figure 3.2). This allows 
the repeatability of the detectors to be analyzed on features caused by geometry such 
as  corners  of  polyhedra  (geometric  solid  in  three  dimensions  with  flat  faces  and 
straight  edges),  occlusions  and  T-junctions.  We  also  allow  bas-relief  textures 
(projecting image with a shallow overall depth) to be modeled with a flat plane so that 
the repeatability can be tested under non-affine warping.

3.Comparing Image Descriptors: Proofs and Results 45



Figure 3.2.  Repeatability is tested by checking if the same real-world features are detected in different views. A geometric  
model is used to compute where the features reproject to.

A margin of error must be allowed because:

 The alignment is not perfect.

 The model is not perfect.

 The camera model (especially regarding radial distortion) is not perfect.

 The detector may find a maximum on a slightly different part of the corner. This  
becomes more likely as the change in viewpoint and hence change in shape of 
the corner become large.

Instead of using fiducial markers, the 3D model is aligned to the scene by hand and 
this is then optimized using a blend of simulated annealing and gradient descent to 
minimize the SSD between all pairs of frames and reprojections.

To compute the SSD between frame  i and reprojected frame  j, the position of all 
points in frame  j are found in frame  i. The images are then bandpass filtered. High 
frequencies  are  removed  to  reduce  noise,  while  low  frequencies  are  removed  to 
reduce the impact of lighting changes. To improve the speed of the system, the SSD is 
only computed using 1000 random points (as opposed to every point).

The datasets used are shown in Figure 3.3,  Figure 3.4 and Figure 3.5. With these 
datasets, it has tried to capture a wide range of corner types (geometric and textural).

46 3.Comparing Image Descriptors: Proofs and Results



Figure 3.3. Box dataset: photographs taken of a test rig (consisting of photographs pasted to the inside of a cuboid) with strong  
changes of perspective,  changes in scale and large amounts of radial  distortion.  This  tests  the corner detectors on planar  
textures.

Figure 3.4. Maze dataset: photographs taken of a prop used in an augmented reality application. This set consists of textural  
features undergoing projective warps as well as geometric features. There are also significant changes of scale.

Figure 3.5. Bas-relief  dataset:  the model  is  a  flat  plane,  but there are  many objects  with significant relief.  This  causes the 
appearance of features to change in a non affine way from different viewpoints.

The repeatability is computed as the number of corners per frame is varied. For 
comparison we also include a scattering of random points as a baseline measure, since 
in the limit if every pixel is detected as a corner, then the repeatability is 100%.

To  test  robustness  to  image  noise,  increasing  amounts  of  Gaussian  noise  were 
added to the bas-relief dataset. It should be noted that the noise added is in addition to  
the significant amounts of camera noise already present.

Results
Shi and Tomasi, derive their result for better feature detection on the assumption 

that the deformation of the features is affine. In the box (Figure 3.3) and maze (Figure 

3.Comparing Image Descriptors: Proofs and Results 47



3.4) datasets, this assumption holds and can be seen in Figure 3.6(a) and Figure 3.6(b) 
the detector outperforms the Harris detector. In the bas-relief dataset (Figure 3.5), this 
assumption does not hold, and interestingly, the Harris detector outperforms Shi and 
Tomasi detector in this case.

(a) (b)

(c) (d)

Figure 3.6. (a), (b), (c): Repeatability results for the three datasets as the number of features per frame is varied. (d): repeatability  
results for the bas-relief data set (500 features per frame) as the amount of Gaussian noise added to the images is varied. For  
FAST and SUSAN, the number of features can not be chosen arbitrarily; the closest approximation to 500 features per frame  
achievable is used.

Mikolajczyk  and  Schmid  [34] evaluate  the  repeatability  of  the  Harris-Laplace 
detector using the method in  [35],  where planar scenes are examined.  The results 
show that  Harris-Laplace points  outperform both DoG points  and Harris  points  in 
repeatability. For the box dataset, the results verify that this is correct for up to about  
1000 points  per  frame (typical  numbers,  probably commonly used);  the results  are 
somewhat less convincing in the other datasets, where points undergo non-projective 
changes.

In  the  sample  implementation  of  SIFT  [44],  approximately  1000  points  are 
generated on the images from the test sets. We concur that this a good choice for the 
number of features since this appears to be roughly where the repeatability curve for 
DoG features starts to flatten off.

48 3.Comparing Image Descriptors: Proofs and Results



Smith and Brady  [23] claim that the SUSAN corner detector performs well in the 
presence of noise since it does not compute image derivatives, and hence, does not 
amplify  noise.  We  support  this  claim:  although  the  noise  results  show  that  the 
performance drops quite rapidly with increasing noise to start with, it soon levels off 
and outperforms all but the DoG detector.

The big surprise of this experiment is that the FAST feature detectors, despite being 
designed  only  for  speed,  outperform  the  other  feature  detectors  on  these  images 
(provided that more than about 200 corners are needed per frame). It can be seen in 
Figure 3.6(a), that the 9 point detector provides optimal performance, hence only this 
and the original 12 point detector are considered in the remaining graphs.

The DoG detector is remarkably robust to the presence of noise. Since convolution 
is linear, the computation of DoG is equivalent to convolution with a DoG kernel. 
Since this kernel is symmetric, this is equivalent to matched filtering for objects with 
that  shape.  The robustness is  achieved because matched filtering is  optimal  in the 
presence of additive Gaussian noise.

FAST, however, is not very robust to the presence of noise. This is to be expected: 
Since high speed is achieved by analyzing the fewest pixels possible, the detector's 
ability to average out noise is reduced.

SIFT vs. SURF
SURF is, up to some point, similar in concept like SIFT, in that they both focus on 

the spatial distribution of gradient information. Nevertheless, SURF outperforms SIFT 
in  practically  all  cases,  as  shown  below.  This  can  be  due  to  the  fact  that  SURF 
integrates the gradient information within a subpatch, whereas SIFT depends on the 
orientations of the individual gradients. This makes SURF less sensitive to noise, as 
illustrated in the example of Figure 3.7.

Figure 3.7. Due to the global integration of SURF's descriptor, it stays more robust to various image perturbations than the  
more locally operating SIFT descriptor.

3.Comparing Image Descriptors: Proofs and Results 49



The  following  presents  both  simulated  as  well  as  real  world  results.  First,  we 
evaluate the effect of some parameter settings and show the overall performance of the 
detector and descriptor based on a standard evaluation set.

We tested the detector using the image sequences and testing software provided by 
Mikolajczyk  [43] that they can be seen in  Figure 3.8. The evaluation criterion is the 
repeatability score (the percentage of points simultaneously present in two images). 
The test sequences comprise images of real textured and structured scenes. There are 
different  types  of  geometric  and  photometric  transformations,  like  changing 
viewpoints, zoom and rotation, image blur, lighting changes and JPEG compression.

(a)

(b)

50 3.Comparing Image Descriptors: Proofs and Results



(c)

(d)

Figure 3.8. Four image sequences. With the wall images (a) and the graffiti images (b) the detector repeatability is tested in  
presence of viewpoint change, with the boat images (c) in the presence of scale changes and with the bikes images (d) in  
presence of blur.

In all experiments the timings were measured on a standard PC Pentium IV, running 
at 3 GHz.

Experimental Evaluation and Parameter Settings
We  tested  two  versions  of  the  Fast-Hessian  detector,  depending  on  the  initial 

Gaussian derivative filter size. FH-9 stands for the Fast Hessian detector with the initial 
filter size 9×9, and FH-15 is the 15×15 filter on the double input image size version. 
Apart from this, for all the experiments shown, the same thresholds and parameters 
were used.

The detector is compared to the Difference of Gaussians (DoG) detector by Lowe 
(from the SIFT detector), and the Harris Laplace detectors proposed by Mikolajczyk 
[30]. The number of interest points found is on average very similar for all detectors 
(see Table 3.9 for an example). The thresholds were adapted according to the number 
of interest points found with the DoG detector.

3.Comparing Image Descriptors: Proofs and Results 51



Detector Threshold Points Time (ms)

FH-15 (SURF) 60.000 1813 160

FH-9 (SURF) 50.000 1411 70

Hessian-Laplace (Hessian-Affine [x]) 1000 1979 700

Harris-Laplace (Harris-Affine [x]) 2500 1664 2100

DoG (SIFT) default 1520 400

Table 3.9.  Thresholds, number of detected points and calculation time for the detectors in our comparison. (First image of  
Gra#ti scene, 800×640).

The FH-9 detector is more than five times faster than DoG and ten times faster than 
Hessian-Laplace. The FH-15 detector is more than three times faster than DoG and 
more than four times faster than Hessian-Laplace (see also  Table 3.9).  At the same 
time, the repeatability scores for our detectors are comparable or even better than for 
the competitors.

The repeatability scores for the Graffiti sequence (Figure  3.10(a)) are comparable for 
all  detectors.  The repeatability  score  of  the FH-15 detector  for  the  Wall  sequence 
(Figure  3.10(b))  outperforms the competitors.  Note that  the sequences Graffiti  and 
Wall contain out-of-plane rotation, resulting in affine deformations, while the detectors 
in  the  comparison  are  only  invariant  to  image  rotation  and  scale.  Hence,  these 
deformations have to be accounted for by the overall robustness of the features. In the 
Boat sequence (Figure  3.10(c)), the FH-15 detector shows again a better performance 
than the others. The FH-9 and FH-15 detectors are outperforming the others in the 
Bikes sequence (Figure  3.10(d)).

(a) (b)

52 3.Comparing Image Descriptors: Proofs and Results



(c) (d)

Figure 3.10. Repeatability score for the Graffiti (a) and Wall (b) (viewpoint change), Boat (c) (scale change) and Bikes sequence 
(d) (image blur).

Descriptors Evaluation
Bay et  al.  [36] already demonstrated the usefulness of  SURF in a simple object 

detection task. To further illustrate the quality of the descriptor in such a scenario, we 
present  some  further  experiments.  Basis  for  this  was  a  publicly  available 
implementation of two bag-of-words classifiers  [38]. Given an image, the task is to 
identify  whether  an  object  occurs  in  the  image  or  not.  For  our  comparison,  we 
considered  the  naive  Bayes  classifier,  which  works  directly  on  the  bag-of-words 
representation, as suggested by Dance et al. [37]. This simple classifier was chosen as 
more  complicated  methods  like  pLSA  might  wash  out  the  actual  effect  of  the 
descriptor. Similar to [38], we executed our tests on 400 images each from the Caltech 
background and airplanes set. 50% of the images are used for training, the other 50% 
for  testing.  To  minimize  the  influence  of  the  partitioning,  the  same  random 
permutation of training and test sets was chosen for all  descriptors. While this is a 
rather simple test set for object recognition in general, it definitely serves the purpose 
of comparing the performance of the actual descriptors.

The framework already provides interest points, chosen randomly along Canny [39] 
edges to create a very dense sampling. These are then fed to the various descriptors.  
Additionally, we also consider the use of SURF keypoints, generated with a very low 
threshold, to ensure good coverage.

Figure 3.11 shows the obtained ROC curves for SURF-128, SIFT and GLOH. Note 
that  for  the calculation of  SURF,  the sign of  the Laplacian  was  removed from the 
descriptor. For both types of interest points, SURF-128 outperforms its competitors on 
the majority of the curve significantly.

3.Comparing Image Descriptors: Proofs and Results 53



(a) (b)

Figure 3.11. Comparison of different descriptor strategies for a naive Bayes classifier working on a bag-of-words representation. 
Top: descriptors evaluated on random edge pixels. Bottom: on SURF keypoints.

54 3.Comparing Image Descriptors: Proofs and Results



Chapter 4
4. Image Feature Detector: the Computer Program

Overview
Up to this point we have viewed what is a detector and how they work in detail. We 

have compared and tested four detectors and now we shall view the last part of the 
project: the practical implementation.

The practical implementation is where we make reality all what we have reviewed 
in previous chapters. This practical implementation is a Linux program with graphical 
user interface where Harris, FAST, SIFT and SURF detectors are applied on images and 
detected features are showed on screen. The program is called Image Feature Detector 
and  uses  the  Qt  application  framework  and  the  OpenCV library  to  carry  out  the 
implementation of the feature detectors.

Qt Application Framework
Qt  is  a  cross-platform  application  framework  used  for  developing  application 

software  [52] with graphical  user  interface (in  whose case Qt is  mainly used as  a 
widget toolkit), and also used for developing non-GUI programs such as command-line 
tools and consoles for servers. It is developed by Nokia from 2008, after the Trolltech 
acquisition. Distributed under the terms of the GNU Lesser General Public License 
(among others), Qt is free and open source software.

Figure 4.1. Qt logo and slogan.

4. Image Feature Detector: the Computer Program 55



Qt uses standard C++ but makes extensive use of a special code generator (called 
the  Meta  Object  Compiler,  or  MOC)  together  with  several  macros  to  enrich  the 
language. Qt can also be used in several other programming languages via language 
bindings. It runs on all major platforms and has extensive internationalization support. 
Non-GUI features include SQL database access,  XML parsing, thread management, 
network  support,  and  a  unified  cross-platform  API  for  file  handling.  All  editions 
support a wide range of compilers, including the GCC C++ compiler and the Visual 
Studio suite.

The modular Qt C++ class library provides a set of application building blocks, 
delivering  all  of  the  functionality  needed  to  build  advanced,  cross-platform 
applications, Figure 4.2.

Figure 4.2. Qt module architecture. Qt allow a flexible use of C++ modules that we can choice and add to our project as we 
need some kind of functionality.

At  all  times,  Qt  was  available  under  a  commercial  license  that  allows  the 
development of proprietary applications without restrictions on licensing. In addition 
to that, Qt has been gradually made available under a number of increasingly free 
licenses. On January 14, 2009, Qt version 4.5 added another option, the LGPL, which 
should make Qt even more attractive for non-GPL open source projects and for closed 
applications.

In addition, Qt framework has a set of official tools which makes easier to program 
applications to developers. The main tools at a glance are:

Qt Creator
Qt Creator is a cross-platform integrated development 

environment (IDE) tailored to the needs of Qt developers. 
Qt Creator runs on Windows, Linux/X11 and Mac OS X 
desktop  operating  systems,  and  allows  developers  to 
create  applications  for  multiple  desktop  and  mobile 
device platforms.

56 4. Image Feature Detector: the Computer Program



Qt Designer
Qt Designer is a cross-platform GUI layout and forms 

builder. It allows to design and build widgets and dialogs 
using on-screen forms using the same widgets that will be 
used in the application. Forms created with Qt Designer 
are fully-functional, and they can be previewed with all 
the look and feel that will be showed in run time.

Qt Linguist
Qt  Linguist  provides  a  set  of  tools  that  let  the 

translation  and  internationalization  of  applications.  Qt 
supports simultaneous support of multiple languages and 
writing  systems  with  a  single  source  tree  and  single 
application binary.

In Image Feature Detector, besides Qt Creator (Kdevelop has been used instead) Qt 
Designer and Qt Linguist have been used in the development of the program.

OpenCV Library
OpenCV is a computer vision programming library [47]. It is free for use under the 

open source BSD license. The library is written in C and C++, and hence, it is cross-
platform. There is active development on interfaces for Python, Java, Matlab, and other 
languages [51].

Officially launched in 1999, the OpenCV project  was initially an Intel Research 
initiative,  but  from mid  2008  is  supported  by  Willog  Garage,  a  robotics  research 
laboratory with headquarters in Menlo Park (California, USA) devoted to developing 
hardware and open source software for  industrial,  academic and personal  robotics 
applications.

Figure 4.3. OpenCV logo.

4. Image Feature Detector: the Computer Program 57



OpenCV was designed for  computational efficiency and with a strong focus on 
realtime  applications.  OpenCV  can  making  use  of  Intel's  Integrated  Performance 
Primitives (IPP): if the library finds these Intel optimized routines on the system, it will  
use them to accelerate itself in run time. In addition, the library can take advantage of 
multicore processors.

One of OpenCV’s goals is to provide a simple-to-use computer vision infrastructure 
that helps people build fairly sophisticated vision applications quickly. The OpenCV 
library contains over 500 functions that span many areas in vision, including factory 
product  inspection,  medical  imaging,  security,  user  interface,  camera  calibration, 
stereo vision, and robotics. Because computer vision and machine learning often go 
hand-inhand, OpenCV also contains a full, general-purpose Machine Learning Library 
(MLL). This sublibrary is focused on statistical pattern recognition and clustering. The 
MLL is highly useful for the vision tasks that are at the core of OpenCV’s mission, but 
it is general enough to be used for any machine learning problem.

Image Feature Detector mainly makes use of some OpenCV functions to use the 
Harris, FAST, SIFT and SURF detectors and applying them to images, but also uses 
other functions to calculate the used time detecting features.

Image Feature Detector
Image  Feature  Detector  has  been  developed  to  put  into  practice  the  concepts 

explained in the project in a technical and visual way. Therefore, it has been a little 
challenger  to  learn  C++  (I  only  knew  a  little  bit  C  and  Java),  to  know the  Qt 
framework and to fight (yes, to fight) with the OpenCV libraries.

Learning C++ has not been hard because there are countless of tutorials and books 
on Internet and I knew Java, similar object-oriented programming language. Knowing 
the Qt  framework has  an  easy  learning curve and its  hierarchy class  modules,  its 
comprehensive  official  documentation  and tools  make  the use of  these libraries  a 
quick and intuitive task. But unlucky, the use of the OpenCV libraries has been a little 
harder issue. There are various reasons than have made of the linkage of OpenCV 
function  calls  with  the  Image  Feature  Detector  classes  a  complicated  matter  with 
several headaches:

 First of all, the documentation organization is confused. There are the C and the 
C++ library, and sometimes you do not know in which library to search some 
function  or  structure.  The  learning  curve  is  high,  the  classes,  structures  and 
functions  descriptions  are  short.  In  addition,  there  are  three  different  image 
formats,  CvMat  and  IplImage  C image  formats  and  Mat  C++ image  format. 
These formats  are different  in  implementation,  but  for  use are  the same,  and 
many times functions do not specificate what image format should be used. For 
converting from CvMat and IplImage to Mat there are problems and it requires 
additional computational use.

58 4. Image Feature Detector: the Computer Program



 The version of  OpenCV used in the project  is  downloaded directly  from the 
program repository. This is so because the last released version as a project date, 
the  2.1,  does  not  include  the  SIFT  detector,  it  was  only  included  from  the 
incoming  version  not  released  yet.  This  repository  version  has  underwent  a 
complete module arrangement and, furthermore, the C OpenCV implementation, 
reportedly, appears to be deprecated and its use is not recommended (although 
neither  forbidden).  Because  of  this  and  the  lack  of  documentation  in  this 
OpenCV trunk version, I have had to guess how the functions worked instead of 
to call to a function and fixing the parameters.

As main IDE, I have used KDevelop, not for its power, options or versatility but for 
its simplicity and overall, for its low computer requirements that have allowed run the 
IDE in my Atom N270 netbook with no so much problems.

The icons are took from the Humanity and Tango free and open source icon packs. 
The first one is available in Ubuntu Linux distributions and the second one Google 
helps you to find it.

Nevertheless, thanks to the official documentation, Google and lot of people who 
posts  their doubts on Internet, at  last it  has been possible to run Qt and OpenCV 
together in a simple graphical user interface Linux program.

Main Window
The Image Feature Detector GUI has a typical  Main Window (Figure 4.4) with a 

Multiple Document Interface. The main widget is a window where there are a number 
of toolbars at the top, a status bar at the bottom and a central area where, as images 
are opened, the windows are showed in an ordered way.

Figure 4.4. Image Feature Detector main window.

4. Image Feature Detector: the Computer Program 59

1 432 1312111098765 1415



Following, the main window options are explained:

1. Opens a stored image.

2. Captures an image from the default computer webcam.

3. Captures an image from the RoboLab webcam.

4. Saves  an  opened  image.  Interesting  option  to  save  images  with  detected 
features.

5. Zooms in the image.

6. Zooms out the image.

7. Adjusts the image size to the window.

8. Shows the image with the original size.

9. Applies Harris detector to the image.

10. Applies FAST detector to the image.

11. Applies SIFT detector to the image.

12. Applies SURF detector to the image.

13. Resets the image to its original state.

14. Do4! Option: opens 3 new windows with the same image than the original 
one and appliesa detector on each window.

15. FAST Features in Real Time: shows the preview image of the system default 
camera and captures and detects in real time FAST features.

Through the main window it can access to another secondary windows, preferences 
or view options. Below is also explained each of the 4 parameter bars that appears 
when an detector is applied.

Startup Window
This window is aimed to serve as a presentation window. From it, the user can open 

a stored image, captures a new image from the default system camera or captures a 
new one from the Robocomp interface camera. In addition, at the bottom there are a 
Recent Opened Files button that when the user press it a menu is opened with a list of 
recent used images. If the user wants, this window can be avoided on each program 
starting by unchecking the Show this dialog on startup checkbox.

60 4. Image Feature Detector: the Computer Program



Figure 4.5. Image Feature Detector startup window.

Capture from Webcam Window
It shows the preview image of the system default camera and captures a frame to 

use it as experimental image.

Figure 4.6. Image Feature Detector Capture from webcam window.

Capture from RoboComp inteface Window
It shows the preview image of the RoboComp Robolab robot camera and captures a 

frame to use it as experimental image.

4. Image Feature Detector: the Computer Program 61



Figure 4.7. Image Feature Detector Capture from RoboComp interface window.

FAST Features in Real Time
It shows the preview image of the system default camera and captures and detects 

in  real  time  FAST  features.  The  parameters  are  the  same  than  when  features  are 
detected from the main window.

Figure 4.8. Image Feature Detector FAST features in real time window.

Preferences Window
It shows a preferences window where the main program options can be configured. 

The options to be configured can be:

 To  adjust  the  image  size  to  the  window  space  when  windows  are  tiled  or 
cascaded.

62 4. Image Feature Detector: the Computer Program



 To save a history with recent opened files. Additionally, the user can clean that 
list.

Figure 4.9. Image Feature Detector preferences window.

About Window
It  shows  a  window  where  information  about  the  license  type,  used 

libraries/resources and the author appears.

Figure 4.10. Image Feature Detector about window.

Applying Detectors: Parameters
When a  detector  button is  pressed a  new toolbar  with  the detector  parameters 

appears. In that bar it can set the different parameters and options of each detector, and 
afterwards,  applying to the image.  It  is  also possible set  the default  value of  each 

4. Image Feature Detector: the Computer Program 63



parameter pressing the Reset button.

Harris parameters

The calculation of the Harris features are made throughout the below OpenCV C 
function.  Corners in the image can be found as the local maxima of the destination 
image.

void cvCornerHarris(CvArr* image,
                    CvArr* harris_dst,
                    int blockSize,
                    int aperture_size=3,
                    double k=0.04)

• Sobel Aperture Size: aperture parameter for the Sobel operator. Before apply the 
Harris operator it is applied the Sobel one. The aperture size is the size of the 
square window with which doing the convolution. It can be 1, 3, 5 or 7. The IFD 
default value is 3.

• Harris  Aperture  Size:  after  applying  the Sobel  operator,  the Harris  covaration 
matrix M is calculated with an ApertureSize×ApertureSize window. If the value 
of the block size is 1 the Harris detector simply is not applied. The IFD default 
value is 2.

• k Value: it is the arbitrary k value of

R=−k 2=Det M −k Tr 2M 

The IFD default value is 0.01.

FAST parameters

The calculation of the FAST features are made throughout the following OpenCV 
C++ function:

void FAST(Mat& image,
          vector<KeyPoint>& keypoints,
          int threshold,
          bool nonmaxSupression=true)

• Threshold: threshold on difference between intensity of center pixel and pixels on 
circle around this pixel. The IDF default value is 50.

• Non-max  Suppression:  if  it  is  true  then  non-maximum  suppression  will  be 
applied  to  detected  corners.  The  highest  value  of  each  corner  will  only  be 

64 4. Image Feature Detector: the Computer Program



visualized. By default is activated.

SIFT parameters

To calculate the SIFT features throughout the OpenCV C++ implementation we 
must first create a SIFT object with tree different structures:

SIFT mySIFT(CommonParams mySIFTCommon,
            DetectorParams mySIFTDetector,
            DescriptorParams mySIFTDescriptor);

These structures, explained below, let us configure the detector parameters. After 
create the object, we use the () operator to pass the desired Mat image to the SIFT 
object to calculate the features:

mySIFT(const Mat& img,
       const Mat& mask, 
       vector<KeyPoint>& keypoints);

The detected keypoypoints are stored in the keypoints vector keypoints.

The detector parameters are set by tree structures. These parameters are sorted by 
kind: with the first structure  CommonParams we can set the number of octaves and 
layers per octave. The remaining parameters of this structure set the first octave to take 
into account and how to measure the angle of each feature, whether the first angle of 
all or an average of them. The second structure DetectorParams sets the thresholds 
parameters  of  the  detector.  And  the  third  structure  DescriptorParams sets  the 
descriptors parameters, but we are not going to use them. Image Feature Detector only 
allow to set the main relevant parameters of the detector which are enough in most 
cases.

SIFT::CommonParams mySIFTCommon(
nOctaves,
nOctaveLayers,
SIFT::CommonParams::DEFAULT_FIRST_OCTAVE,
SIFT::CommonParams::AVERAGE_ANGLE);

SIFT::DetectorParams mySIFTDetector(
threshold,
edgeThreshold);

SIFT::DescriptorParams mySIFTDescriptor(
SIFT::DescriptorParams::GET_DEFAULT_MAGNIFICATION(),
SIFT::DescriptorParams::DEFAULT_IS_NORMALIZE,
SIFT::DescriptorParams::DESCRIPTOR_SIZE);

• Threshold: features must exceed this threshold to be processed. The IFD default 
value is 0.014.

• Edge Threshold: threshold of corners. The IFD default value is 10.

4. Image Feature Detector: the Computer Program 65



• Octaves: the number of octaves to be used for extraction. With each next octave 
the feature size is doubled. The IFD default value is 3.

• Layers/Octave: the number of layers within each octave. The default value is 1.

• Show Orientation: shows a radius in red inside the circumferences of each feature 
indicating its orientation. By default is activated.

SURF parameters

The calculation of the SURF features are made throughout the following OpenCV C 
function:

void cvExtractSURF(const CvArr* image,
                   const CvArr* mask,
                   CvSeq** keypoints,
                   CvSeq** descriptors,
                   CvMemStorage* storage,
                   CvSURFParams params);

The  parameters  of  the  detector  are  set  by  the  below  structure.  The  parameter 
extended indicates whether a descriptor with 64 or 128 elements, but we are not going 
to use the descriptors and hence, we are not interested in this parameter.

struct CvSURFParams {
  int extended;
  double threshold;
  int nOctaves;
  int nOctaveLayers;
}

• Threshold: Hessian threshold that keypoints must exceed to be extracted. The IFD 
default value is 4000.

• Octaves: the number of octaves to be used for extraction. With each next octave 
the feature size is doubled. The IFD default value is 3.

• Layers/Octave: the number of layers within each octave. The IFD default value is 
1.

• Show Orientation: shows a radius in red inside the circumferences of each feature 
indicating its orientation. By default is activated.

66 4. Image Feature Detector: the Computer Program



Chapter 5
5. Conclusions

In  this  project  we  have  viewed a  sigh  introduction  to  computer  vision  and  its 
applications  to  the  real  world,  a  presentation  to  digital  image  processing  and  its  
relation with computer vision, and we have touched the world of robotics and the 
related Robolab laboratory.

Concerning to image feature detectors, we have view that, depending of the use we 
are going to do, it is preferable use a detector instead of other:

 If we need to extract features in real time, the solution is FAST without any doubt.  
If we need to extract scale-invariant features to tracking purposes and we have a 
high-end computer, then the optimum detector is SURF.

 If we do not need fast processing, FAST is not the most interesting solution, and 
with SIFT and SURF we can extract features with more information than FAST. 
Harris extracts similar features than FAST, although is slower.

 If  we  need  to  realize  recognition  tasks  we  can  use  SIFT  or  SURF,  but  it  is 
demonstrated in Chapter 3 that SURF detector is better in all aspects than SIFT.

We have implemented in C++ with OpenCV and Qt a Linux program with GUI 
that  by  applying  the  four  detectors  to  a  same image  visually  compares  them and 
quickly  shows  the  results  on  screen.  This  program,  Image  Feature  Detector,  lets 
configure the different parameters of each detector.

In this  End of Degree Project, I  have carried out explanations, comparisons and 
implementation of features detectors and of any other element that was related with 
the project, and that have had as result this memory and the Linux program. But with 
any doubt, the increase of my own knowledge and skills related with computer vision 
science, C++ programming and English language have been the most enriching part 
of the project.

5. Conclusions 67





Bibliography

References

Books
Main references (in About Memory's Preface section this is explained)

[1] Computer Vision: Algorithms and Applications
Richard Szeliski – Springer, 2010 September.

[2] Computer Vision: A Modern Approach, 1st edition
David A. Forsyth, Jean Ponce – Prentice Hall, 2003.

[3] Digital Image Processing, 2nd edition
Rafael C. Gonzalez - Richard E. Woods – Prentice Hall, 2002.

[4] Theory Of Applied Robots, 2nd edition
Reza N. Jazar – Springer, 2010.

[5] Feature Extraction and Image Processing, 1th edition
Mark S. Nixon, Alberto S Aguado – Academic Press, 2002.

[6] Learning OpenCV, 1th edition
Gary Bradski, Adrian Kaehler – O'Really, 2008 September.

Scientific literature
[7] Machine Perception Of Three-Dimensional Solids

Lawrence G. Roberts – 1963.

[8] The Analysis of Cell Images
Judith M. S. Prewitt, Mortimer L. Mendelsohn – 1966.

[9] A 3x3 Isotropic Gradient Operator for Image Processing
Irwin Sobel – 1968.

[10] A Combined Corner And Edge Detector

Bibliography 69



Chris Harris, Mike Stephens – 1988.

[11] Good Features to Track
Jianbo Shi, Carlo Tomasi – 1994.

[12] Distinctive Image Features from Scale-Invariant Keypoints
David G. Lowe – 1999.

[13] SURF: Speeded Up Robust Features
Herbert Bay, Tinne Tuytelaars, Luc Van Gool – 2006.

[14] Machine learning for high-speed corner detection
Edward Rosten, Tom Drummond – 2006.

[15] Faster and better: a machine learning approach to corner detection
Edward Rosten, Reid Porter, Tom Drummond – 2008.

[16] Exploring Visual Odometry for Mobile Robots
Hatem Alismail – 2009.

Secondary references (in About Memory's Preface section this is explained)

[17] RobEx: an open-hardware robotics platform
J. Mateos, A. Sánchez, L. J. Manso, P. Bachiller, P. Bustos – 2010.

[18] RoboComp: a Tool-based Robotics Framework
Luis Manso, Pilar Bachiller, Pablo Bustos, Pedro Núnez, Ramón Cintas, Luis 
Calderita – 2010.

[19] The spectral input to honeybee visual odometry
L. Chittka, J. Tautz – 2003.

[20] The computation of optical flow
S. S. Beauchemin and J. L. Barron – 1995.

[21] Deriving a 3-d description of a moving rigid object from monocular tv-frame 
sequence
T. Bonde and H. H. Nagel – 1979.

[22] Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover
Hans P. Moravec – 1980.

[23] SUSAN - A New Approach to Low Level Image Processing
Stephen M. Smith and J. Michael Brady – 1993.

[24] Scale-space filtering
A. P. Witkin – 1983.

[25] The structure of images.
J. J. Koenderink – 1984.

70 Bibliography



[26] Detecting salient blob-like image structures and their scales with a scale-space 
primal sketch: a method for focus-of-attention.
T. Lindeberg –  1993.

[27] Detection of local features invariant to affine transformations
Krystian Mikolajczyk – 2002.

[28] Local grayvalue invariants for image retrieval. IEEE Trans. on Pattern Analysis 
and Machine Intelligence
C. Schmid, R. Mohr – 1997.

[29] An affine invariant interest point detector
Krystian Mikolajczyk and Cordelia Schmid – 2002.

[30] Scale and affine invariant interest point detectors
Krystian Mikolajczyk and Cordelia Schmid – 2004.

[31] Performenace Evaluation of Corner Detection Algorithms under Affine and 
Similarity Transforms
Farahnaz Mohanna, Farzin Mokhtarian – 2001.

[32] Fast corner detection
Trajkovic, M., Hedley, M. – 1998.

[33] Evaluation of interest point detectors
Schmid, C., Mohr, R., Bauckhage, C. – 2000.

[34] Indexing based on scale invariant interest points
Mikolajczyk, K., Schmid, C. – 2001.

[35] Comparing and evaluating interest points
Schmid, C., Mohr, R., Bauckhage, C. – 1998.

[36] Interactive museum guide: Fast and robust recognition of museum objects
H. Bay, B. Fasel, and L. van Gool – 2006 May.

[37] Visual categorization with bags of keypoints
C. Dance, J. Willamowski, L. Fan, C. Bray, and G. Csurka – 2004.

[38] R. Fergus, P. Perona, and A. Zisserman
Object class recognition by unsupervised scale-invariant learning – 2003.

[39] A Computational Approach to Edge Detection
John Canny – 1986.

[40] A performance evaluation of local descriptors
Krystian Mikolajczyk, Cordelia Schmid – 2005.

[41] Head Pose Estimation in Face Recognition across Pose Scenarios
M. Saquib Sarfraz, Olaf Hellwich – 2008.

Bibliography 71



Websites
[42] http://robolab.unex.es/
[43] http://www.robots.ox.ac.uk/~vgg/research/affine/
[44] http://www.cs.ubc.ca/~lowe/keypoints/

US patent 6,711,293 for SIFT detector:
[45] http://patft.uspto.gov/

The great official Qt 4.x reference documentation and its big on-line community:
[46] http://doc.qt.nokia.com/

OpenCV chaotic website:
[47] http://opencv.willowgarage.com/

Articles on English Wikipedia (not all articles are referenced explicitly):
Blob detection
Canny edge detector

[48] Computer stereo vision
[49] Corner detection

Difference of Gaussians
Edge detection
Feature (computer vision)
Feature detection (computer vision)
Gaussian function
Harris affine region detector
Hessian Affine region detector

[50] Odometry
[51] OpenCV

Optical flow
Prewitt

[52] Qt (framework)
Roberts Cross
Scale space
Scale-invariant feature transform
Sobel operator
SURF

[53] Template matching
Visual descriptors

[54] Visual odometry

A lot of searches on Google:
http://www.google.com/

72 Bibliography

http://www.google.com/
http://en.wikipedia.org/
http://opencv.willowgarage.com/
http://doc.qt.nokia.com/
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=/netahtml/PTO/srchnum.htm&r=1&f=G&l=50&s1=6711293.PN.&OS=PN/6711293&RS=PN/6711293
http://www.cs.ubc.ca/~lowe/keypoints/
http://www.robots.ox.ac.uk/~vgg/research/affine/
http://robolab.unex.es/


Image Credits

Chapter 1
Figure 1.1 [1]
Figure 1.2 [1]
Figure 1.3 [42]
Figure 1.4 [42]

Chapter 2
Figure 2.1 Wikimedia Commons – Cáceres
Figure 2.2 Wikimedia Commons – Cáceres
Figure 2.3 [5]
Figure 2.7 [5]
Figure 2.9 [5]
Figure 2.11 [5]
Figure 2.12 [10]
Figure 2.13 [14]
Figure 2.14 [14]
Figure 2.15 [12]
Figure 2.16 [12]
Figure 2.17 [12]
Figure 2.18 [12]
Figure 2.19 [13]
Figure 2.20 [13]
Figure 2.21 [13]
Figure 2.22 [13]
Figure 2.23 [13]
Figure 2.24 [13]
Figure 2.25 [13]
Figure 2.26 [13]
Figure 2.27 [13]
Figure 2.28 [13]

Chapter 3
Figure 3.2 [14]
Figure 3.3 [14]
Figure 3.4 [14]
Figure 3.5 [14]
Figure 3.6 [14]
Figure 3.7 [13]
Figure 3.8 [43]
Figure 3.10 [13]
Figure 3.11 [13]

Chapter 4
Figure 4.1 [46]
Figure 4.2 [46]
Figure 4.3 [47]
Figure 4.4 Own creation
Figure 4.5 Own creation
Figure 4.6 Own creation
Figure 4.7 Own creation
Figure 4.8 Own creation
Figure 4.9 Own creation
Figure 4.10 Own creation

Bibliography 73

http://commons.wikimedia.org/wiki/C%C3%A1ceres
http://commons.wikimedia.org/wiki/C%C3%A1ceres

	Contents
	Prólogo
	Sobre la Memoria

	Preface
	About the Memory

	1.  Introduction
	What Is Computer Vision
	What Is Digital Image Processing
	Robotics and Robolab
	Robolab

	Visual Odometry
	Template matching


	2. Image Features, Descriptors and Detectors
	What Is a Feature
	What Is a Descriptor
	Visual descriptors

	Main Detectors Overview
	Roberts Cross Operator
	Sobel Operator
	Harris Detector
	Shi and Tomasi Detector
	FAST
	SIFT
	SURF


	3.	Comparing Image Descriptors: Proofs and Results
	Harris vs. FAST
	Timing Results
	Repeatability Test Conditions
	Results

	SIFT vs. SURF
	Experimental Evaluation and Parameter Settings
	Descriptors Evaluation


	4. Image Feature Detector: the Computer Program
	Overview
	Qt Application Framework
	OpenCV Library
	Image Feature Detector
	Main Window
	Startup Window
	Capture from Webcam Window
	Capture from RoboComp inteface Window
	FAST Features in Real Time
	Preferences Window
	About Window
	Applying Detectors: Parameters


	5. Conclusions
	Bibliography
	References
	Books
	Scientific literature
	Websites

	Image Credits


